Skip directly to site content Skip directly to page options Skip directly to A-Z link Skip directly to A-Z link Skip directly to A-Z link
Volume 29, Number 4—April 2023
Research

Mapping Global Bushmeat Activities to Improve Zoonotic Spillover Surveillance by Using Geospatial Modeling

Soushieta JagadeshComments to Author , Cheng Zhao, Ranya Mulchandani, and Thomas P. Van Boeckel
Author affiliations: Eidgenössische Technische Hochschule Zürich, Zurich, Switzerland (S. Jagadesh, C. Zhao, R. Mulchandani, T.P. Van Boeckel); Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; One Health Trust, Washington, DC, USA (T.P. Van Boeckel)

Main Article

Figure 3

Predicted priority regions for future survey efforts in urban areas as determined by a model of global bushmeat activities (hunting, preparing, and selling bushmeat) to improve zoonotic spillover surveillance. The 100 priority locations identified are indicated by the necessity for surveillance, a previously described measure (30). Color and size of dots indicate high to low priority of needed surveillance efforts.

Figure 3. Predicted priority regions for future survey efforts in urban areas as determined by a model of global bushmeat activities (hunting, preparing, and selling bushmeat) to improve zoonotic spillover surveillance. The 100 priority locations identified are indicated by the necessity for surveillance, a previously described measure (30). Color and size of dots indicate high to low priority of needed surveillance efforts.

Main Article

References
  1. Milner-Gulland  EJ, Bennett  EL. Wild meat: the bigger picture. Trends Ecol Evol. 2003;18:3517. DOIGoogle Scholar
  2. Bar-On  YM, Phillips  R, Milo  R. The biomass distribution on Earth. Proc Natl Acad Sci U S A. 2018;115:650611. DOIPubMedGoogle Scholar
  3. Jones  KE, Patel  NG, Levy  MA, Storeygard  A, Balk  D, Gittleman  JL, et al. Global trends in emerging infectious diseases. Nature. 2008;451:9903. DOIPubMedGoogle Scholar
  4. Cleaveland  S, Haydon  DT, Taylor  L. Overviews of pathogen emergence: which pathogens emerge, when and why? Curr Top Microbiol Immunol. 2007;315:85111. DOIPubMedGoogle Scholar
  5. Milbank  C, Vira  B. Wildmeat consumption and zoonotic spillover: contextualising disease emergence and policy responses. Lancet Planet Health. 2022;6:e43948. DOIPubMedGoogle Scholar
  6. Plowright  RK, Parrish  CR, McCallum  H, Hudson  PJ, Ko  AI, Graham  AL, et al. Pathways to zoonotic spillover. Nat Rev Microbiol. 2017;15:50210. DOIPubMedGoogle Scholar
  7. Georges-Courbot  MC, Sanchez  A, Lu  CY, Baize  S, Leroy  E, Lansout-Soukate  J, et al. Isolation and phylogenetic characterization of Ebola viruses causing different outbreaks in Gabon. Emerg Infect Dis. 1997;3:5962. DOIPubMedGoogle Scholar
  8. Leroy  EM, Rouquet  P, Formenty  P, Souquière  S, Kilbourne  A, Froment  JM, et al. Multiple Ebola virus transmission events and rapid decline of central African wildlife. Science. 2004;303:38790. DOIPubMedGoogle Scholar
  9. Coad  L, Abernethy  K, Balmford  A, Manica  A, Airey  L, Milner-Gulland  EJ. Distribution and use of income from bushmeat in a rural village, central Gabon. Conserv Biol. 2010;24:15108. DOIPubMedGoogle Scholar
  10. Schulte-Herbrüggen  B, Cowlishaw  G, Homewood  K, Rowcliffe  JM. The importance of bushmeat in the livelihoods of West African cash-crop farmers living in a faunally-depleted landscape. PLoS One. 2013;8:e72807. DOIPubMedGoogle Scholar
  11. Martins  V, Shackleton  CM. Bushmeat use is widespread but under-researched in rural communities of South Africa. Glob Ecol Conserv. 2019;17:e00583. DOIGoogle Scholar
  12. Nasi  R, Taber  A, Van Vliet  N. Empty forests, empty stomachs? Bushmeat and livelihoods in the Congo and Amazon Basins. Int Rev. 2011;13:35568. DOIGoogle Scholar
  13. Zhou  W, Orrick  K, Lim  A, Dove  M. Reframing conservation and development perspectives on bushmeat. Environ Res Lett. 2022;17:011001. DOIGoogle Scholar
  14. Friant  S, Ayambem  WA, Alobi  AO, Ifebueme  NM, Otukpa  OM, Ogar  DA, et al. Eating bushmeat improves food security in a biodiversity and infectious disease “hotspot”. EcoHealth. 2020;17:12538. DOIPubMedGoogle Scholar
  15. Ripple  WJ, Abernethy  K, Betts  MG, Chapron  G, Dirzo  R, Galetti  M, et al. Bushmeat hunting and extinction risk to the world’s mammals. R Soc Open Sci. 2016;3:160498. DOIPubMedGoogle Scholar
  16. Fa  JE, Wright  JH, Funk  SM, Márquez  AL, Olivero  J, Farfán  , et al. Mapping the availability of bushmeat for consumption in Central African cities. Environ Res Lett. 2019;14:094002. DOIGoogle Scholar
  17. Deith  MCM, Brodie  JF. Predicting defaunation: accurately mapping bushmeat hunting pressure over large areas. Proc Biol Sci. 2020;287(1922):20192677.
  18. Brashares  JS, Golden  CD, Weinbaum  KZ, Barrett  CB, Okello  GV. Economic and geographic drivers of wildlife consumption in rural Africa. Proc Natl Acad Sci U S A. 2011;108:139316. DOIPubMedGoogle Scholar
  19. Cawthorn  DM, Hoffman  LC. The bushmeat and food security nexus: A global account of the contributions, conundrums and ethical collisions. Food Res Int. 2015;76:90625. DOIGoogle Scholar
  20. Nyakarahuka  L, Ayebare  S, Mosomtai  G, Kankya  C, Lutwama  J, Mwiine  FN, et al. Ecological niche modeling for filoviruses: a risk map for Ebola and Marburg virus disease outbreaks in Uganda. PLoS Curr. 2017;9:ecurrents.outbreaks.07992a87522e1f229c7cb023270a2af1.
  21. Pigott  DM, Golding  N, Mylne  A, Huang  Z, Henry  AJ, Weiss  DJ, et al. Mapping the zoonotic niche of Ebola virus disease in Africa. eLife. 2014;3:e0439504395. DOIPubMedGoogle Scholar
  22. International Union for Conservation of Nature and Natural Resources. IUCN red list of threatened species [cited 2022 Mar 30]. https://www.iucnredlist.org
  23. Marcoulides  KM, Raykov  T. Evaluation of variance inflation factors in regression models using latent variable modeling methods. Educ Psychol Meas. 2019;79:87482. DOIPubMedGoogle Scholar
  24. Phillips  SJ, Dudík  M, Elith  J, Graham  CH, Lehmann  A, Leathwick  J, et al. Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl. 2009;19:18197. DOIPubMedGoogle Scholar
  25. Vignali  S, Barras  AG, Arlettaz  R, Braunisch  V. SDMtune: An R package to tune and evaluate species distribution models. Ecol Evol. 2020;10:11488506. DOIPubMedGoogle Scholar
  26. Valavi  R, Elith  J, Lahoz-Monfort  JJ, Guillera-Arroita  G. blockCV: An r package for generating spatially or environmentally separated folds for k-fold cross-validation of species distribution models. Methods Ecol Evol. 2019;10:22532. DOIGoogle Scholar
  27. Raes  N, ter Steege  H. A null-model for significance testing of presence-only species distribution models. Ecography. 2007;30:72736. DOIGoogle Scholar
  28. Vieilledent  G, Merow  C, Guélat  J, Latimer  A, Kéry  M, Gelfand  AE, et al. hSDM: hierarchical Bayesian species distribution models [cited 2022 May 10]. https://cran.r-project.org/web/packages/hSDM/index.html
  29. Joint Research Centre European Commission; Center for International Earth Science Information Network Columbia University. Global human settlement layer: population and built-up estimates, and degree of urbanization settlement model grid. Palisades (NY): NASA Socioeconomic Data and Applications Center (SEDAC); 2021 [cited 2022 May 10].
  30. Zhao  C, Wang  Y, Tiseo  K, Pires  J, Criscuolo  NG, Van Boeckel  TP. Geographically targeted surveillance of livestock could help prioritize intervention against antimicrobial resistance in China. Nature Food. 2021;2:596602. DOIGoogle Scholar
  31. Cronin  DT, Woloszynek  S, Morra  WA, Honarvar  S, Linder  JM, Gonder  MK, et al. Long-term urban market dynamics reveal increased bushmeat carcass volume despite economic growth and proactive environmental legislation on Bioko Island, Equatorial Guinea. PLoS One. 2015;10:e0134464. DOIPubMedGoogle Scholar
  32. Breman  JG, Heymann  DL, Lloyd  G, McCormick  JB, Miatudila  M, Murphy  FA, et al. Discovery and description of Ebola Zaire virus in 1976 and relevance to the West African epidemic during 2013–2016. J Infect Dis. 2016;214(suppl 3):S93101. DOIPubMedGoogle Scholar
  33. Rezza  G. Emergence of human monkeypox in west Africa. Lancet Infect Dis. 2019;19:7979. DOIPubMedGoogle Scholar
  34. Jiao  Y, Yeophantong  P, Lee  TM. Strengthening international legal cooperation to combat the illegal wildlife trade between Southeast Asia and China. Front Ecol Evol. 2021;9:645427. DOIGoogle Scholar
  35. Lee  TM, Sigouin  A, Pinedo-Vasquez  M, Nasi  R. The harvest of wildlife for bushmeat and traditional medicine in East, South and Southeast Asia: current knowledge base, challenges, opportunities and areas for future research. Center for International Forestry Research (CIFOR); 2014 [cited 2022 May 21].
  36. Bell  D, Roberton  S, Hunter  PR. Animal origins of SARS coronavirus: possible links with the international trade in small carnivores. Philos Trans R Soc Lond B Biol Sci. 2004;359:110714. DOIPubMedGoogle Scholar
  37. Centers for Disease Control and Prevention (CDC). Prevalence of IgG antibody to SARS-associated coronavirus in animal traders—Guangdong Province, China, 2003. MMWR Morb Mortal Wkly Rep. 2003;52:9867.PubMedGoogle Scholar
  38. van Vliet  N, Quiceno  MP, Cruz  D, de Aquino  LJN, Yagüe  B, Schor  T, et al. Bushmeat networks link the forest to urban areas in the Trifrontier region between Brazil, Colombia, and Peru. Ecol Soc. 2015;20:art21. DOIGoogle Scholar
  39. Rushton  J, Viscarra  R, Viscarra  C, Basset  F, Baptista  R, Brown  D. How important is bushmeat consumption in South America: now and in the future? ODI Wildlife Policy Briefings. 2005;11:14.
  40. Kurpiers  LA, Schulte-Herbrüggen  B, Ejotre  I, Reeder  DM. Bushmeat and emerging infectious diseases: lessons from Africa. In: Angelici FM, editor. Problematic wildlife: a cross-disciplinary approach. Cham: Springer International Publishing; 2016. p. 507–51 [cited 2022 May 12].
  41. Mulangu  S, Borchert  M, Paweska  J, Tshomba  A, Afounde  A, Kulidri  A, et al. High prevalence of IgG antibodies to Ebola virus in the Efé pygmy population in the Watsa region, Democratic Republic of the Congo. BMC Infect Dis. 2016;16:263. DOIPubMedGoogle Scholar
  42. Mayor  P, Pérez-Peña  P, Bowler  M, Puertas  PE, Kirkland  M, Bodmer  R. Effects of selective logging on large mammal populations in a remote indigenous territory in the northern Peruvian Amazon. Ecol Soc. 2015;20:art36. DOIGoogle Scholar
  43. Olivero  J, Fa  JE, Real  R, Márquez  AL, Farfán  MA, Vargas  JM, et al. Recent loss of closed forests is associated with Ebola virus disease outbreaks. Sci Rep. 2017;7:14291. DOIPubMedGoogle Scholar
  44. Martin  A, Caro  T, Mulder  MB. Bushmeat consumption in western Tanzania: a comparative analysis from the same ecosystem. Trop Conserv Sci. 2012;5:35264. DOIGoogle Scholar
  45. St. John  FAV, Edwards-Jones  G, Gibbons  JM, Jones  JPG. Testing novel methods for assessing rule breaking in conservation. Biol Conserv. 2010;143:102530. DOIGoogle Scholar
  46. Brierley  L, Vonhof  MJ, Olival  KJ, Daszak  P, Jones  KE. Quantifying global drivers of zoonotic bat viruses: a process-based perspective. Am Nat. 2016;187:E5364. DOIPubMedGoogle Scholar
  47. Olival  KJ, Hosseini  PR, Zambrana-Torrelio  C, Ross  N, Bogich  TL, Daszak  P. Host and viral traits predict zoonotic spillover from mammals. Nature. 2017;546:64650. DOIPubMedGoogle Scholar
  48. Loh  EH, Zambrana-Torrelio  C, Olival  KJ, Bogich  TL, Johnson  CK, Mazet  JAK, et al. Targeting transmission pathways for emerging zoonotic disease surveillance and control. Vector Borne Zoonotic Dis. 2015;15:4327. DOIPubMedGoogle Scholar
  49. Caceres  P, Awada  L, Barboza  P, Lopez-Gatell  H, Tizzani  P. The World Organisation for Animal Health and the World Health Organization: intergovernmental disease information and reporting systems and their role in early warning. Rev Sci Tech. 2017;36:53948. DOIPubMedGoogle Scholar
  50. Belay  ED, Kile  JC, Hall  AJ, Barton-Behravesh  C, Parsons  MB, Salyer  S, et al. Zoonotic disease programs for enhancing global health security. Emerg Infect Dis. 2017;23(Suppl 1):S6570. DOIPubMedGoogle Scholar

Main Article

Page created: February 06, 2023
Page updated: March 20, 2023
Page reviewed: March 20, 2023
The conclusions, findings, and opinions expressed by authors contributing to this journal do not necessarily reflect the official position of the U.S. Department of Health and Human Services, the Public Health Service, the Centers for Disease Control and Prevention, or the authors' affiliated institutions. Use of trade names is for identification only and does not imply endorsement by any of the groups named above.
file_external