Economics of vaccinating immunocompromised 19–49-years-old adults against herpes zoster in the US

A SUMMARY REPORT OF CDC & GSK MODELS

Ismael R. Ortega-Sanchez, PhD CDC/NCIRD/DVD

Presentation: September 29, 2021; ACIP Zoster Vaccines Session

Disclaimer: The findings and conclusions in this report are those of the authors and do not necessarily represent the views of the Centers for Disease Control and Prevention.

Conflict of interest

- CDC model: Andrew Leidner, Kai Hong, Tara Anderson, Angela Guo, Jamison Pike, Lisa Prosser, Ismael R. Ortega-Sanchez, Kathleen Dooling
 - No conflicts of interest

- GSK model: Elizabeth La, Desmond Curran, Sara Poston et al., [see complete author list and affiliations]
 - GSK manufacturers the RZV vaccine *and* RTI Health Solutions

Overview

 Policy question: Should adults ≥19 years of age who are or will be immunodeficient or immunosuppressed due to disease or therapy be recommended to receive two doses of RZV for the prevention of herpes zoster and its complications?

Age	19–49 years	≥50 years
General (immunocompetent) population	Not currently under consideration	Recommended
Immunocompromised	Under consideration HSCT Other patient groups	Under consideration

Economic analysis

Question: Is vaccinating immunocompromised* adults against herpes zoster *cost-effective*?

Comparator: Unvaccinated immunocompromised 19–49-years-old adults **Intervention**: Immunization of immunocompromised 19–49-years-old adults

Base-case scenario: What is the incremental *cost-effectiveness* of vaccinating HSCT recipients who are 19–49-years-old using RZV relative to No vaccine?

* Immunocompromised = immunodeficient or immunosuppressed due to disease and/or therapy

IC populations: Base-case and Scenarios

CDC		GSK	
BASE-CASE: Hematopoietic stem cell transplant (HSCT) recipients			

People living with Human immunodeficiency virus (HIV) infection				
Multiple Myeloma		Renal or other solid organ transplant		
Non-Hodgkin Lymphoma		Hodgkin Lymphoma		
Hematologic malignancies		Breast cancer		
Autoimmune and other inflammatory				

Design

- Static analytical decision-making models
- Probabilistic simulation and sensitivity analyses
- Hypothetical population
 - Base-case: cohort of 19-49 yo HSCT recipients
- Time Frame: time of vaccination with 1st and 2nd dose of RZV
- Analytic Horizon: Age-specific Life Expectancy or 30 years
- Discount rate: 3% (0%-6%)
- Healthcare & Societal perspectives

Inputs and main outcomes

Prevention of:

- Uncomplicated HZ cases
- HZ with PHN
- Inpatient care of HZ
- HZ-associated deaths

QALYs saved \$/Case saved **\$/QALY saved**

NNV avert a:

- HZ Case, PHN case
- Hospitalization
- Death

Cost-saving vs Cost-Effective

Cost of intervention: Cost of vaccination program

Savings from intervention = Changes in cost of illness (*without* vaccination program costs)

Net cost vacc = Cost of intervention – Savings from intervention

Cost-saving: Cost of intervention < Savings from intervention

All cost-saving interventions are also cost-effective, but not all cost-effective interventions are cost-savings, not necessarily.

Economic evaluation:

Incremental cost-effectiveness ratio (ICER):

$$ICER = \frac{C_{vacc} - TC_{saved}}{\sum_{t=0}^{T} \frac{(HO_{unvacc} - HO_{vacc})}{(1+r)^{t}}}$$

ICE < 0 Cost-savings (cost-effective)

```
ICE > 0 Costly
Cost-effective?
```

Where:

- **Cvacc** = Cost of intervention (vaccination program costs)
- **TCsaved** = Total savings (difference in disease costs under No vaccination vs. RZV vaccination)
- **HOvacc** = Health outcome of vaccination (ex., HZ cases, QALYs)
- *HOunvacc* = Health outcome of No vaccination (ex., HZ cases, QALYs)
- t = time in years after immunization (t=0, 1, 2,..., T)
- r = discount rate (3%)
- **T** = Analytical horizon (age-specific, in years)

CDC: HSCT, base case estimates & PSA

Summary outcomes	Base-case	
\$ / QALY gained	Cost-saving	
\$ / HZ case averted	Cost-saving	
\$ / hospitalization averted	Cost-saving	
\$ / death averted	Cost-saving	
NNV avert case	10	
NNV avert hospitalization	95	
NNV avert death	10,608	

Probabilistic sensitivity analysis (PSA) 10

GSK: HSCT, base case estimates & PSA

Summary outcomes	Base-Case	
\$ / QALY gained	Cost-saving	
\$ / HZ case averted	Cost-saving	
\$ / hospitalization averted	n/r	
\$ / death averted*	n/r	
NNV avert case	8.6	
NNV avert PHN	46.6	
NNV avert death*	n/r	

Incremental QALYs

PSA simulation
 Base case
 \$20,000 / QALY
 \$40,000 / QALY
 \$60,000 / QALY
 \$80,000 / QALY
 \$100,000 / QALY
 \$120,000 / QALY
 \$140,000 / QALY

n/r = not reported

* Difference in number of HZ deaths between "No Vaccination" and "RZV vaccination" was reported to be zero by GSK model

Probabilistic sensitivity analysis (PSA) ¹¹

GSK and CDC models comparison (I): analytical approach and inputs

• Age groups considered

CDC: Three groups: 19-29yos, 30-39yos and at 40-49yos GSK: 19-49yos (One group only) starting of age 35yrs

• Annual HZ incidence in HSCT

CDC: 40.2 (range 35.6 to 45.12) per 1000 PY GSK: 60 (range 40 to 80) per 1000 PY

• Probability of PHN

CDC: Base case 9.1% (range 6% to 41%) GSK: Base case 12.9% (range 8.5% to 17.3%)

• Antiviral prophylaxis following HSCT

CDC: Prophylaxis period 6mos, SA 1mo to 2yrs GSK: No specific/not explicit

• Vaccination coverage

CDC: Dose-specific 1st dose <93% & 2nd dose <86% GSK: 1st dose & 2nd dose 100% (Base-case), SA 76%-100%

Utilities-Background

CDC: age specific and reduction for IC to 86% GSK: adjusted for baseline quality of life among IC

Duration/transition to IC status

CDC: 2yrs for HSCT GSK: 5yrs for HSCT (range 2 to 30yrs scenario-specific)

• Initial VE & waning of VE in time

CDC Initial VE per dose: 1st 39%, 2nd 68% in 21months follow-up Years until no VE 1st dose 11yrs, 2nd 20yrs.
GSK Initial VE per dose: 1st 58%, 2nd 72.5%, Annual VE waning per dose 1st 18.2%, 2nd 9.1% during IC status

• Unitary cost of HZ outcomes

CDC: Direct cost: non PHN, non inpatient HZ episode (\$1,549), with PHN (\$4,906), as inpatient non PHN (\$37,852)
GSK: Direct cost: non PHN HZ episode (\$3,578), with PHN (\$8,513). Indirect: HZ case (\$199)

GSK and CDC models comparison (II): base case & scenario results

Scenario	GSK	CDC
HSCT (Base case)	Cost-saving, \$140*	Cost-saving
Multiple Myeloma	n/r	Cost-saving
Renal transplant	Cost-saving	n/r
Hematologic malignancy	n/r	\$10,000
HIV	\$33,000	\$79,000
Breast cancer	\$68,000	n/r
Hodgkin lymphoma	\$96,000	n/r
Non-Hodgkin lymphoma	n/r	\$99,000
Autoimmune & inflammatory	150,000 **	\$208,000

* Cost-savings from societal perspective, \$140 from healthcare perspective. n/r = not reported.

****** Implicit AI/INF scenario: Assuming starting age 25 years, HZ incidence 10/1000PY *and* duration of IC status 5 years

CDC model: Autoimmune/inflammatory conditions

Scenario inputs

- Lower health care costs
- Higher VE
- Lower incidence
- Lower risks of death

Incidence (cases/1,000 person-years) among 21–50-year-olds with select AI/INF conditions¹:

- Systemic lupus erythematosus: 15.2 24.6
- Rheumatoid arthritis: 6.6—10.0
- Psoriasis: 3.7—6.4

GSK model: Thresholds in HSCT used to project \$/QALY for Autoimmune/inflammatory conditions

- 1. Chen, S.-Y., et al., Incidence of herpes zoster in patients with altered immune function. Infection, 2014. 42(2): p. 325-334
- 2. Yun et al. 2016. "Risk of Herpes Zoster in Autoimmune and Inflammatory Diseases", Arthritis and Rheumatology 68(9): 2328-2337

Discussion

- Neither model assessed \$/QALY in patients ≥50-years-old
- Base-case: HSCT patients
 - Economic value of RZV vaccine appears to be *favorable* (i.e., cost-saving)
 - High(er) HZ incidence and HZ-related health care costs combined with reasonable VE
 - Clinical trial data support VE assumptions
 - Smaller patient population
- Scenarios: Other patient groups (e.g., HIV, AI/INF)
 - With lower risk of HZ and healthcare costs, the economic value of RZV vaccination is less favorable relative to HSCT patients
 - Some AI/INF conditions may have <u>the least favorable</u> estimates of RZV use, depending on the underlying risk of HZ
 - Larger patient population

End of Summary