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Association between Severity of MERS-
CoV Infection and Incubation Period 

Technical Appendix 2 

Additional Details of Statistical Methods 

The incubation period of an infectious disease is the time from the moment of exposure to 

an infectious agent until signs and symptoms of the disease appear. If infection occurred at time 

Xi for the patient i, and symptom onset occurred at time Zi, the incubation period is defined as Ti 

= Zi – Xi. However, estimation of the incubation period is often complicated because infection 

events cannot be directly observed. If patient i reported that infection most likely occurred in a 

period of exposure between times Li and Ui, where Li ≤ Xi ≤ Ui, the incubation time therefore is 

bounded by the interval (Z – Ui, Z – Li). These data are a special type of survival data, and a 

convenient approach would be to reverse the time axis setting Z as the origin and X as the 

outcome time. Reversing the time axis is valid only when the density function for infection is 

uniform in chronologic time. This condition should be reasonable in the setting of Middle East 

respiratory syndrome coronavirus, with each exposure interval being relatively short. 

To evaluate the incubation period distribution, we compared the goodness of fit of 

different parametric models (gamma, lognormal, Weibull, and exponential distributions) usually 

used to describe the incubation period distribution of infectious diseases. We found that the 

gamma distribution had the best Bayesian Index Criterion value. We assumed consequently a 

gamma distribution with parameters (k, θ) and probability density function 

𝑓(𝑡𝑖) =
𝑡𝑖
𝑘−1𝑒−

𝑡𝑖
𝜃

Γ(𝑘)𝜃𝑘
 

We assumed that the incubation period distribution had different parameters among the 

nonfatal cases and the fatal cases, and we consequently estimated 2 different parameters (k, θ) of 

the gamma distribution using Markov Chain Monte Carlo (MCMC) methods. We compared the 

mean incubation period between these 2 groups by using the 10,000 posterior samples of each 
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couple of parameters (k, θ). We then considered 2 approaches to estimate the association between 

the risk for death (outcome) and the incubation period (explanatory variable). 

Multiple Linear Regression 

We evaluated the potential association between the length of the incubation period and the 

age and sex of patients in both subgroups (fatal and nonfatal cases) by using a multiple linear 

regression approach within a Bayesian framework, and we did not find a significant association 

(Table 3). 

Approach 1: Exact Likelihood Approach 

Let f and F be the pdf and cdf of the incubation period, assumed to be gamma distributed 

with parameters k and θ and stratified by clinical outcome (fatal and nonfatal cases). Let P be 

the probability of death, which we assume to be dependent on age (g), sex (s) and incubation 

period (x) as in logistic regression: 

𝑃(𝑔, 𝑠, 𝑥) =
1

1 + exp⁡[−(𝛽0 + 𝛽1𝑔 + 𝛽2𝑠 + 𝛽3𝑥)]
 

Depending if the case i had an exact exposure date (A1) or an interval of exposure (A2), we 

defined the probability of death qi. If case i is in A1, then the probability of death is simply 

qi = P(gi, si, xi). If case i is in A2, then the probability of death is 

𝑞𝑖 = ∫ 𝑃(𝑔𝑖, 𝑠𝑖, 𝑥)
𝑓(𝑥|𝑘𝑖 , 𝜃𝑖)

𝐹(𝑥𝑖
𝑈|𝑘𝑖 , 𝜃𝑖) − 𝐹(𝑥𝑖

𝐿|𝑘𝑖, 𝜃𝑖)
𝑑𝑥

𝑥𝑖
𝑈

𝑥𝑖
𝐿

 

where [𝑥𝑖
𝐿 , 𝑥𝑖

𝑈] is the range of incubation period for case i and where (ki, θi) is the couple of 

parameters of the gamma distribution depending if the case i belongs to the fatal or nonfatal cases 

group. 

We estimated 𝜃 = (𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝑘𝑓𝑐, 𝜃𝑓𝑐 , 𝑘𝑛𝑓𝑐 , 𝜃𝑛𝑓𝑐) simultaneously using MCMC and 

the following likelihood: 

𝐿(𝜃) = ∏𝑓(𝑥𝑖|𝑘𝑖 , 𝜃𝑖)

𝑖∈𝐴1

∏[𝐹(𝑥𝑖
𝑈|𝑘𝑖 , 𝜃𝑖) − 𝐹(𝑥𝑖

𝐿|𝑘𝑖, 𝜃𝑖)]

𝑖∈𝐴2

∏𝑞𝑖
𝑑𝑖(1 − 𝑞𝑖)

1−𝑑𝑖

𝑖

 

(1) 

(2) 
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where di = 1 if case i died from the disease and 0 otherwise; (kfc, θfc) and (knfc, θnfc) are the 2 

parameters of the gamma distribution for the fatal and the nonfatal cases, respectively. 

Approach 2: Resampling Approach 

We also defined a logistic regression model by using incubation times resampled from the 

10,000 posterior samples. This approach enabled us to simulate the distribution with imputed 

values for individual incubation periods, which was particularly useful for an analysis in which 

we stratified incubation periods into tertiles. In general, the likelihood based approach might be 

preferred to this simulation approach, and we presented the simulation approach results as 

sensitivity analyses. 

In this approach, the probability of death was similarly defined as in equation (1) and for 

each patient with interval-censored exposure data, we estimated 10,000 posterior samples for the 

incubation time by using MCMC, and we used the same likelihood as defined in equation (2), but 

where qi = P(gi, si, xi) for all cases, using the resampled incubation time for patients with interval-

censored data. 

Bayesian Framework 

We used a Bayesian framework to estimate the different parameters of the logistic 

regression. In this framework, if 𝜃 represents a vector of parameters and 𝑦 the data, and Bayes 

theorem gives us the following relationship: 

𝑝(𝜃|𝑦) =
𝑝(𝑦|𝜃)𝑝(𝜃)

𝑝(𝑦)
 

where 𝑝(𝜃) is the prior probability of the parameters 𝜃⁡, 𝑝(𝑦|𝜃) is the likelihood function 

and 𝑝(𝜃|𝑦) is the posterior probability of 𝜃 given the data 𝑦. The MCMC process was initiated 

by giving random values to the parameters 𝜃 and by choosing noninformative prior (flat prior) for 

𝜃. A Metropolis Hastings algorithm was used to update the parameter values in each iteration. In 

each iteration, all the 𝑘 parameters are randomly generated using the normal distribution with the 

mean 𝜃𝑘
𝑗−1

 (previous value of the kth parameter) and standard error 𝜎𝑘, 𝑁(𝜃𝑘
𝑗−1

, 𝜎𝑘) for each 

parameter. The updated likelihood is compared with the previous one using the following accept-

reject method: 
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𝑞 =
𝑝(𝑦|𝜃𝑗)𝑝(𝜃𝑗)

𝑝(𝑦|𝜃𝑗−1)𝑝(𝜃𝑗−1)
 

If 𝑞 ≥ 1, the proposed new values of parameters 𝜃𝑗 are accepted. If 𝑞 < 1, then 𝜃𝑗 values are 

accepted with probability 𝑞. 

A burn-in period with 5,000 iterations was used to reduce the bias of the choice of the 

initial parameter values and to generate values only in the stationary distribution. The above 

algorithm was repeated 10,000 times after the burn-in period, with an acceptance rate included in 

[0.45, 0.55] for each parameter (adjusting on 𝜎𝑘). 

 
Technical Appendix Table 1. Characteristics of patients with cases of infection with MERS-CoV, South Korea* 

Patient characteristics Fatal cases Nonfatal cases Overall p value 

All patients     
 Sample size, no. (%) 36 (21) 134 (79) 170 (100) – 
 Mean ± SD age, y 68.9 ± 10.0 50.8 ± 15.4 54.6 ± 16.2 <0.001 
 Male sex, no. (%) 24 (67) 74 (55) 98 (58) 0.297 
 Mean incubation period, d (95% CrI) 6.4 (5.2–7.9) 7.1 (6.3–7.8) 6.9 (6.3–7.5) – 
Patients with recorded exposure intervals 
 Sample size, no. (%) 26 (24) 83 (76) 109 (100) – 
 Mean ± age, y 68.6 ± 10.0 50.4 ± 14.6 54.8 ± 15.7 <0.001 
 Male sex, no. (%) 18 (69) 47 (57) 65 (60) 0.361 
 Mean incubation period, d (95% CrI) 6.4 (5.2–8.0) 7.1 (6.4–7.8) 6.9 (6.3–7.5) – 
*MERS-CoV, Middle East respiratory syndrome coronavirus; –, not applicable; CrI, credibility interval. 

 
 
 
Technical Appendix Table 2. Factors associated with risk for death from infection with MERS-CoV, South Korea* 

Factors 

Risk for death,† OR (95% CI) 

All patients, n = 170 
Patients with recorded 

exposure intervals, n = 109 

Approach 1: continuous incubation period using exact likelihood   

 Incubation period (continuous) 0.83 (0.68–1.03) 0.91 (0.75–1.10) 
 Age, y 1.11 (1.07–1.16) 1.13 (1.09–1.19) 
 Sex, M vs. F 2.24 (0.89–6.00) 3.15 (0.98–10.10) 

Approach 2: continuous incubation period using resampling method   
 Incubation period‡ (continuous) 0.81 (0.66–0.98) 0.91 (0.73–1.12) 
 Age, y 1.11 (1.08–1.16) 1.15 (1.09–1.23) 
 Sex, M vs. F 1.89 (0.73–5.32) 3.56 (1.02–13.86) 

Approach 2: incubation period split into tertiles   
 Incubation period‡   
  Less than 1st tertile (shortest)§ (reference group) 1.00 1.00 
  1st–2nd tertile§ 0.55 (0.20–1.48) 0.67 (0.07–3.25) 
  Greater than 2nd tertile (longest)§ 0.26 (0.09–0.91) 0.62 (0.11–3.11) 
 Age, y 1.12 (1.08–1.16) 1.14 (1.08–1.20) 
 Sex, M vs. F 2.27 (0.84–7.15) 3.04 (0.91–10.84) 
*MERS-CoV, Middle East respiratory syndrome coronavirus; OR, odds ratio. 
†Coefficients exp(β) of the logistic regression were estimated by using Markov Chain Monte Carlo methods (10,000 runs) with incubation period as 
outcome variable and age and sex as predictors. Moreover, 10,000 samples from posterior distributions of incubation periods T for each patient estimated 
were used in the logistic regression model. 
‡10,000 samples of the incubation periods T for each patient were drawn by using Markov Chain Monte Carlo methods. 
§Tertiles were 5.1 and 8.0 days for all patients and 5.2 and 8.1 days for patients with exact exposure dates, respectively.  
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Technical Appendix Table 3. Factors associated with incubation period in fatal and nonfatal cases of infection with MERS-CoV, 
South Korea* 

Factor 

Coefficient β (95% CrI)† 

Fatal cases, n = 36 Nonfatal cases, n = 134 

Age 0.06 (0.16 to – 0.04) 0.02 (0.01 to – 0.04) 
Sex, M vs. F 1.02 (3.38 to – 1.51) 0.34 (1.25 to – 0.58) 
*MERS-CoV, Middle East respiratory syndrome coronavirus; CrI, credibility interval. 
†Coefficients (β) of multiple linear regression were estimated by using Markov Chain Monte Carlo methods (10,000 runs) with incubation period as 
outcome variable and age and sex as predictors. Moreover, 10,000 samples from posterior distributions of incubation periods T for each patient estimated 
were used in the multiple regression model. 
 


