
Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-1

13. Command Reference

Introduction

Epi Info 7 is easy to operate in interactive mode, but complex or repeated operations

require saving the steps as programs. Programs (similar to “scripts” in other software) can

be used to set up menus, guide and limit the data entry process, restructure data, and do

analyses.

In Form Designer and Classic Analysis, programming consists of interacting with a series

of dialogs that produce the actual program statements. Experienced users may want to edit

the statements or type them directly in the Program Editor. For this reason, the details of

command syntax are provided and include a definition of each command and its operation

because a single command (e.g., EXECUTE) may be found in Form Designer, Classic

Analysis, and Visual Dashboard. Commands are in module based chapters with notation of

differences that may exist between program implementation. Some commands are only

available in one or two programs. Check Commands are saved in Form Designer and

executed in Enter. Classic Analysis commands are generated, edited, executed, and may be

saved with the Program Editor from Classic Analysis.

Functions and operators appear within commands and are used for common tasks (i.e.,

extracting a year from a date, combining two numeric values, calculating duration between

two dates, or converting numbers to text and vice versa).

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-2

Check Code Commands

ASSIGN

Description

This command assigns the result of an arithmetic or string expression to a variable.

Syntax

ASSIGN <variable> = <expression>

ASSIGN <variable> = <defined DLLOBJECT>!<script function>({<parameters>})

 The <variable> represents a variable in a database or a defined variable created in a

program.

 The <expression> represents any valid arithmetic or string expression.

 The <defined DLLOBJECT> represents any variable defined as a DLL object.

 The <script function> represents the name of a class or method inside the DLL or

WSC that returns the desired value to be assigned.

 The <parameters> represent one or more optional function parameters to be passed

into the DLL or WSC (do not include the {} or <> symbols in the code; parenthesis

are required).

Comments

This command assigns the value of an expression to a variable. The variable may be a

database variable in a form or Data Table, a user-defined variable created by the DEFINE

command, or a system variable.

Examples

Example 1: The patient's age is calculated using the date of birth and the date the survey

was last updated. The example assumes a form exists with the following fields: DOB (Date),

SurveyDate (Date), and Age (Numeric). The code below would appear in the AFTER section

of the second date field to be filled in by the user.

IF NOT BirthDate = (.) AND NOT SurveyDate = (.) THEN

ASSIGN Age = YEARS(BirthDate, SurveyDate)

END-IF

Example 2: The code below will automatically set the checkbox field 'Minor' to true when

the value of the field 'Age' is below 18. The example assumes a form exists that has the

following fields: Minor (Checkbox) and Age (Numeric). The code below would appear in the

AFTER section of the Age field.

IF Age < 18 THEN

ASSIGN Minor = (+)

END

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-3

Example 3: A field is assigned the value of a mathematical expression that is used to

calculate body mass index. The example assumes a form exists with the following fields:

BMI (Numeric), Weight (Numeric), and Height (Numeric). The code below would appear in

the AFTER section of the last field to be entered. Note that Weight and Height in this

formula are being measured in pounds and inches, respectively.

ASSIGN BMI = (Weight / (Height * Height)) * 703

Example 4: A patient ID field is automatically generated using the patient's last name,

gender, and middle initial. The example assumes a form exists with the following fields: ID

(Text), LastName (Text), Sex (Text), and MI (Text). The code below would appear in the

AFTER section of the last of the above fields to be entered.

ASSIGN ID = LastName & " - " & Sex & " (" & MI & ")"

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-4

AUTOSEARCH

Description

AUTOSEARCH causes Enter to search for records with values in the specified fields that

match ones in the current record. If a match is found, it can be displayed, edited, or ignored,

and the current record can continue to be entered.

Syntax

AUTOSEARCH [<field(s)>]

 The <field(s)> represents one or more fields to search.

Comments

The results are displayed as a spreadsheet. If you have more records than can be viewed in

a single screen, a scroll bar appears to the right of the spreadsheet. Use the mouse to see

the additional matched records.

To quickly navigate to one of the matched records returned, double-click the intended row.

Alternatively, move the cursor to the desired row and press Enter or click OK. Navigating

to a matched record will discard any data entered to the new record. All fields will show

data from the selected record. The record number indicator at the lower left will show the

record number of the selected record. To avoid selecting any of the matched records, press

Esc or click Cancel to return to the current new record. Data entry will continue for the

new record.

Fields displayed from a search are determined as follows:

 If a single field is the key field, it will be displayed with as many other fields as

possible.

 Multiple key fields (if any) will be displayed before any others.

Example

The AUTOSEARCH command is used to find duplicate entries during data entry. In this

example, duplicates are identified by a matching first and last name as in a name-based

registry system. The example assumes a form exists with the following fields: FirstName

(Text) and LastName (Text). The code below would appear in the AFTER section of the

second field to be filled in by the user.

AUTOSEARCH FirstName LastName

Note: When searching on multiple fields, put the AUTOSEARCH command in Check Code

for a field after all the key values have been entered. In the example above, both FirstName

and LastName are key fields and LastName is the last of the key fields to be entered. The

AUTOSEARCH command should appear in the Check Code for LastName.

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-5

BEEP

Description

This command causes the computer to generate a beep sound. It is often used to emphasize

a customized message or warning dialog during data entry.

Syntax

BEEP

Comments

Command must be typed into the Program Editor since it is not available using the

Command Tree.

Example

The computer emits a beep when invalid data is detected in the Age field. This code should

appear in the AFTER section of the Age field.

IF Age > 5 THEN

BEEP

DIALOG "Do not include records for children over 5."

END-IF

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-6

CLEAR

Description

CLEAR sets the field named to the missing value, as if it had been left blank. The command

is used to clear a previous entry when an error has been detected or a change occurs. More

than one field may be specified. CLEAR is frequently followed by a GOTO command, which

places the cursor in position for further entry after an error.

Note: More than one field can be used with the CLEAR command.

Syntax

CLEAR [<field(s)>]

 The <field> represents the name of a field on the form. If more than one field is

specified, a space will separate them.

Comments

CLEAR will delete the value only for the current record. CLEAR cannot be used in grid

tables. In Classic Analysis, you must clear a variable to use the ASSIGN command to

assign it a value of null (.).

Examples

Example 1: The code below prevents invalid data from being saved to the current record by

erasing it as soon as it is detected. The example assumes a form exists with the following

field: Age (Numeric). The code below would appear in the AFTER section of the Age field.

IF Age >= 18 THEN

BEEP

DIALOG "Do not include records for adults."

CLEAR Age

END-IF

Example 2: The code below prevents an invalid date from being saved to the current record

by erasing it as soon as it is detected. The example assumes a form exists with the following

fields: DOB (Date) and SurveyDate (Date). The code below would appear in the AFTER

section of the SurveyDate field.

IF (DOB > SurveyDate) OR (SurveyDate > SYSTEMDATE) THEN

CLEAR DOB SurveyDate

DIALOG "Invalid date detected. Please try again."

END-IF

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-7

Example 3: The code below prevents an invalid date from being saved to the current record

by erasing it as soon as it is detected. By using a GOTO command to move the cursor back

to the SurveyDate field, you are forced to keep entering data until valid data are detected.

The example assumes a form exists with the following fields: DOB (Date) and SurveyDate

(Date). The code below would appear in the AFTER section of the SurveyDate field.

IF DOB > SurveyDate THEN

CLEAR SurveyDate

GOTO SurveyDate

DIALOG "Survey date invalid. Please try again."

END-IF

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-8

COMMENTS (*)

Description

In Check Code and Classic Analysis, the combination of backslash and asterisk in the

beginning of a line of code and an asterisk and backslash at the end, as shown in some code

samples, indicates a comment. Commented lines are not executed. This allows you to enter

user-defined comments to identify tasks, describe variable names or code blocks for

documentation, and to assist with trouble-shooting or debugging.

Syntax

/* <text>

*/

 The <text> represents any alphanumeric text as a comment or a block of code slated

to be ignored.

Comments

The /* character must be placed in the first column of a line to be recognized as comment

mark. For comments longer than one line, the */ characters should be added at the end of

the code. Use comments to disable commands.

Examples

Example 1: Comments are used to note the date of the code's generation date, purpose, and

author.

/* Written by Jason D. Veloper, MPH – 06/30/2010

The block of code below uses the YEARS function

*/

ASSIGN AGE = YEARS(DOB, SYSTEMDATE)

Example 2: Comments are used to disable certain commands from executing.

/* The next few lines are incomplete and are commented for later

DEFINE PatientID Numeric – Note: need to determine ID should be a

Text type variable.

LIST – ToDo: need to add the variables to list

*/

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-9

DEFINE

Description

This command creates a new variable. In Check Code, all user defined variables are saved

in the DEFINEDVARIABLES section.

Syntax

DEFINE <variable> {<scope>} {<type indicator>}

 <variable> represents the name of the variable to be created. The name of the newly

defined variable cannot be a reserved word. For a list of reserved words, see the List

of Reserved Words section.

 <scope> is optional and is the level of visibility and availability of the new variable.

<scope> must be one of the reserved words: STANDARD, GLOBAL, or

PERMANENT. If omitted, STANDARD is assumed and a type indicator cannot be

used. For information on defining a variable as a DLL OBJECT, see the DEFINE

DLLOBJECT command.

 <type indicator> is required and cannot be used if <scope> is omitted. <type

indicator> is the data type of the new variable and must be one of the following

reserved words: NUMERIC, TEXTINPUT, YN, or DATEFORMAT. If omitted, the

variable type will be inferred based on the data type of the first value assigned to the

variable. However, omitting field type is not recommended. Once field type is

defined, the variable type cannot be changed. An error will occur if you attempt to

assign data of a different type to the variable.

Comments

A custom variable defined in Epi Info 7 might not have a predefined data type if the <type

indicator> is omitted when the variable is defined. If the variable does not have a

predefined type and has not been used, the variable will accept a value in any of the four

data types (Text, Number, Date, Yes/No [Boolean]) that is assigned to the variable the first

time. Thereafter, the variable takes on the data type of the value assigned and it’s data

type cannot be changed. However, omitting field type is not recommended. An error will

occur if you attempt to assign data of a different data type. Various functions can be used to

manipulate data, changing data type of values to match the data type of the variable. Some

of these functions include FORMAT, TXTTONUM, TXTTODATE, and NUMTODATE.

Variable Scope

 STANDARD variables retain their value only within the current record and are

reset when you load a new record. Standard variables are used as temporary

variables behaving like other fields in the database. In Classic Analysis, Standard

variables lose their values and definitions with each READ statement.

 GLOBAL variables retain values across related forms and when the program opens

a new form, but are removed when you close the Enter program. Global variables

persist while the program is executed. Global variables are also used in Classic

Analysis to store values between changes of data source.

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-10

 PERMANENT variables are stored in the EpiInfo.Config.xml file and retain any

value assigned until the value is changed by another assignment or the variable is

undefined. They are shared among Epi Info programs (i.e., Enter, Classic Analysis,

etc.) and persist even if the computer is shut down. Permanent variables in Classic

Analysis may not have values that depend directly or indirectly on table fields. A

<prompt/description> created for a permanent variable will exist for one session,

and must be re-established each time it is used.

Type Indicators

 TEXTINPUT - Variables of this data type can receive any alpha-numeric characters

including symbols and the output of functions (e.g., FORMAT).

 NUMERIC - Variables of this data type can receive numbers and the output of

functions (e.g., TXTTONUM).

 DATEFORMAT - Variables of this data type can receive date values including the

output of functions (e.g., TXTTODATE and NUMTODATE).

 YN - Variables of this data type can receive the Boolean values of (+) for Yes and (-)

for No. Until an assignment is made, YN type variable values are (.) or missing.

Examples

Example 1: A variable is defined without <scope>, <type indicator>, and

<prompt/description>. Standard scope thus becomes the default scope. As no type is

specified, the variable can be assigned number, date, text, or Boolean data. However, once

assigned a value, the data type of the variable becomes the data type of the value that has

been assigned and may not be changed.

DEFINE BodyMassIndex NUMERIC

Example 2: A variable with standard scope and of type YN is defined.

DEFINE DoYouSmoke YN

IF DateSmokingStarted = (+) THEN

ASSIGN DoYouSmoke = (+)

ELSE

ASSIGN DoYouSmoke = (.)

END-IF

Example 3: A variable with standard scope and in date format is defined.

DEFINE DateOfBirth DATEFORMAT

Example 4: A variable with permanent scope is defined, but with no <type indicator>. As

described in Example 1, the variable data type will be set with the first assignment of data

and cannot be changed thereafter.

DEFINE StateID PERMANENT

Example 5: A variable with global scope and of type text is defined.

DEFINE PatientID GLOBAL TEXTINPUT

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-11

DEFINE DLLOBJECT

Description

This command creates a variable that represents an ActiveX object and a class within an

ActiveX DLL (dynamic link library) file, ActiveX EXE (executable file), or a Windows

Scripting Component (WSC) file.

Syntax

ActiveX DLL File

DEFINE <variable> DLLOBJECT "<ActiveX name>.<class>"

Windows Scripting Component (WSC) File

DEFINE <variable> DLLOBJECT "<filename>"

 The <variable> represents the name of the variable to be created. <variable> cannot

be a reserved word.

 The <ActiveX name> represents the internal name of the ActiveX object that

contains the class object for the DLL or EXE file.

 The <class> represents an internal class name that is defined within the ActiveX

component.

 The <filename> represents the name of the Windows Scripting Component (WSC)

file where the script component resides.

Comments

The ActiveX name may not be the same as the actual name of the dll (dynamic link library)

or executable (exe) file. An ActiveX object is given a name when it’s developed. This name is

required to create the object. The ActiveX object (executable or dll) must be registered

before it can be used. Windows Scripting Component (WSC) objects can also be used.

Examples

Example 1: A variable is created that points to a class object within the Epiweek DLL file.

This variable can subsequently be used to find the Epi Week for any given date.

DEFINE Week DLLOBJECT "EIEpiwk.Epiweek"

Example 2: A variable is created that points to a class object within the

GetGlobalUniqueID.WSC file. You can use this variable to assign a field a unique ID.

DEFINE Global_ID DLLOBJECT "GetGlobalUniqueID.WSC"

AFTER and END-AFTER

Description

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-12

This command divides Check Commands to be executed after data entry. All commands in

the AFTER and END-AFTER block are executed after entering data to the field, page, or

form.

Syntax

AFTER

 AFTER and END-AFTER are only used in Check Code.

Comments

This command enables actions to occur after accessing a form, page, or field. The default

time to execute commands associated with a variable is after entry.

AFTER must start in the first position of the line and end with END-AFTER.

Example

The following commands represent the Check Code for a variable called Demo1.

BEFORE

DIALOG ”This is Before entry”

END-BEFORE

AFTER

DIALOG ”This is After entry”

END-AFTER

BEFORE and END-BEFORE

Description

This command divides Check Commands to be executed before data entry from those

executed after entry. All commands in the BEFORE and END-BEFORE block are executed

before data entry to the field, page, or form.

Syntax

END-BEFORE

 ENDBEFORE is only used in Check Code. Command buttons will not take

ENDBEFORE since all code inserted will be executed when you click the button.

Comments

This command enables actions to occur before accessing a form, page, or field. The default

time to execute commands associated with a variable is before entry.

BEFORE must start in the first position of the line and end with END-BEFORE.

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-13

Example

The following commands represent the Check Code that raise a dialog before the cursor

enters the field before data entry, and then after the cursor leaves the field following data

entry.

BEFORE

DIALOG ”This is Before entry”

END-BEFORE

AFTER

DIALOG ”This is After entry”

END-AFTER

CLICK and END-CLICK

Description

This command block is for fields that have a click event such as Command Buttons,

Checkboxes, Legal Values, and Comment Legal fields. Not all field types support the

CLICK command. Check Commands in the Click block are executed immediately upon

clicking the field or clicking an item in a drop-down list.

Syntax

CLICK

//Add commands here

END-CLICK

Comments

This command block enables actions to occur immediately upon clicking a field that

supports the CLICK event.

CLICK must start in the first position of the line and end with END-CLICK.

Example

The following commands raise a dialog when the field is clicked.

CLICK

DIALOG ”The checkbox was just clicked.”

END-CLICK

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-14

EXECUTE

Description

Executes a Windows or DOS program - either one explicitly named in the command or one

designated within the Windows registry as appropriate for a document with a named file

extension. This provides a mechanism for bringing up the default word processor or browser

on a computer without first knowing its name. The EXECUTE command accepts a series of

paths, separated by semicolons:

EXECUTE c:\epi_info\myfile.exe;d:\myfile.exe

If the first is not found, the others are tried in succession. In Check Code, the EXECUTE

command can be placed in any command block, but is often used with a button. A button

does not have a Before Entry section.

Syntax

EXECUTE <filename>

EXECUTE "<filename> <command-line parameters>"

EXECUTE NOWAITFOREXIT <filename>

EXECUTE NOWAITFOREXIT '<filename>'

EXECUTE NOWAITFOREXIT "<filename>"

EXECUTE WAITFOREXIT <filename>

EXECUTE WAITFOREXIT '<filename>'

EXECUTE WAITFOREXIT "<filename>"

 The <filename> represents the path and program name for .exe (filename for

registered Windows programs) and .com (filename for MS-DOS binary executable)

files.

 The <command-line parameters> represent any additional command-line arguments

that the program can accept.

 When Wait for Command to Execute (modal) is specified, the command should run

and Enter should continue running. When Wait for Command to Execute is not

specified (non-modal), Enter should wait until the executed program closes before

continuing. When EXECUTE is run modally, permanent variables are written before

the command is executed and reloaded after it is executed.

Comments

If the name of an executable program, (e.g., ENTER.EXE, MYBATCH.BAT, or

MYWEB.HTM) is given, the program will be run in a separate window. The window closes

when the program terminates.

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-15

If the name given is not a program, but a file with an extension (the three characters after

the ".") registered by Windows for displaying the document, the correct program to display

the file will be activated (i.e., WRITEUP.DOC might cause Microsoft Word© to run and load

the file on one computer). Usually .TXT will run NOTEPAD.EXE© or WORDPAD.EXE©,

and image files will appear in a browser or in a graphics program. An .HTM file will bring

up the default browser.

You will not need to supply the location or even the name of the program that will be run.

These details are stored in the Windows registry for common file extensions. The same

concept applies to Internet addresses (URLs). Give a URL (Universal Resource Locator)

that ends in .HTM or begins with HTTP:// “http://www.cdc.gov/epiinfo/” and Windows

brings up the default browser, connects to the Internet (if possible), and goes directly to the

site indicated.

Examples

Example 1: A text file on the C drive is opened. The operating system will select an

application to open the file.

EXECUTE “C:\logfile.txt”

Example 2: An executable file is run.

EXECUTE "C:\Windows\Notepad.exe"

Example 3: Windows Internet Explorer is run and passed http://www.cdc.gov/epiinfo as a

command-line parameter. Because WAITFOREXIT is specified, Enter will not allow you to

continue entering data until the browser window is closed.

EXECUTE WAITFOREXIT "http://www.cdc.gov/epiinfo"

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-16

GOTO

Description

This command can be used alone or in an IF statement to transfer the cursor to a named

variable field.

Syntax

GOTO <event>

 The <event> can be a +1, -1, page number, or a field name.

Event and Description

 +1 Automatically saves the current page if changes have been made, and goes to the

next page.

 -1 Automatically saves the current page if changes have been made, and goes to the

previous page.

 <page number> Automatically saves the current page if changes have been made,

and goes to the page indicated by the number.

 <field name> Goes to the field indicated. Automatically saves the current page if

changes have been made, if the field is on another page.

Comments

GOTO will be ignored if it is in the Before or After Record event. The GOTO command skips

all the variables in between unavailable for data entry or Read Only.

Examples

Example 1: The form will skip directly from one field to another based on certain user

input. The example assumes a form exists that has the following fields: DoYouSmoke

(Yes/No), PacksPerDay (Numeric), and HeartDisease (Yes/No). The code below would

appear in the AFTER section of the DoYouSmoke field.

IF DoYouSmoke = (+) THEN

GOTO HeartDisease

ELSE

GOTO PacksPerDay

END-IF

Example 2: You will be taken to the second page on the form based upon an answer

provided to a question on lung disease. The example assumes a form exists that has two

pages and the following fields: LungDisease (Yes/No). The code below would appear in the

AFTER section of the LungDisease field.

IF LungDisease = (-) THEN

GOTO 2

END-IF

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-17

Example 3: You will be taken to the page immediately following the one they are on

currently. The example assumes a form exists that has two pages and the following fields:

DOB (Date) on page 1. The code below would appear in the AFTER section of the DOB field.

IF NOT DOB = (.) THEN

GOTO +1

END-IF

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-18

UNHIDE

Description

HIDE - This command hides a field from the form and prevents data entry.

UNHIDE - This command makes a field visible and returns it to the status before it was

hidden.

Syntax

HIDE [<field(s)>]

UNHIDE [<field(s)>]

 The <field(s)> represents one or more valid field names.

Comments

If no field name is specified, the current field (the one to which the Check Code block

pertains) is assumed. Text fields can be hidden or unhidden to position messages on the

screen, and the display of alternate messages. Label/Title fields cannot be hidden.

Examples

Example 1: Questions relating to pregnancy will not be displayed if the patient is male. The

ELSE section of the IF command allows the fields to be unhidden if you go back and change

your answer in the Sex field. The example assumes a form exists with the following fields:

Sex (Text), Pregnant (Yes/No), and ChildBirth (Yes/No). The code below would appear in

the AFTER section of the Sex field.

IF Sex = "M" THEN

HIDE Pregnant

HIDE ChildBirth

ELSE

UNHIDE Pregnant

UNHIDE ChildBirth

END-IF

Example 2: The field that has the HIDE command will be hidden. The example assumes a

form exists with two pages and the following fields: LungDisease (Yes/No). The code below

would appear in the AFTER section of the LungDisease field.

IF LungDisease = (-) THEN

HIDE

END-IF

Example 3: Questions relating to pregnancy will not be displayed if the patient is a male.

The example assumes a form exists with the following fields: Sex (Text), Pregnant (Yes/No),

Complications (Yes/No), and ChildBirth (Yes/No). The code below would appear in the

AFTER section of the Sex field.

IF Sex = "M" THEN

HIDE Pregnant ChildBirth Complications

END-IF

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-19

Note: When hiding a field, it is important that be unhidden (with an If…Then…Else…) if

the value entered is changed.

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-20

IF THEN ELSE

Description

This command defines conditions and one or more consequences which occur when the

conditions are met. An alternative consequence can be given after the ELSE statement to

be realized if the first set of conditions is not true. The ELSE statement is optional.

Syntax

IF <expression> THEN

[command(s)]

END-IF

IF <expression> THEN

[command(s)]

ELSE

[command(s)]

END-IF

 The <expression> represents a condition that determines whether or not subsequent

commands will be run. If the condition evaluates to true, the commands inside of the

IF block will run. If the condition evaluates to false, the commands inside of the

ELSE block will run instead. If no ELSE exists and the condition is false, then no

commands inside of the IF block are run.

 The (command[s]) represents at least one valid command.

 The ELSE statement is optional and will run any code contained inside of it when

the <expression> evaluates to false.

Comments

The IF statement is executed immediately if it does not refer to a database variable, any

characteristic or attribute that can be measured, or if any defined variables have been

assigned literal values.

Examples

Example 1: If you select "Male" for the patient's sex then the fields named Pregnancy and

ChildBirth are hidden. The example assumes a form exists with the following fields all on

the same page: Sex (Text), Pregnancy (Yes/No), and ChildBirth (Yes/No). The code below

would appear in the AFTER section of the Sex field.

IF (Sex = "Male") THEN

HIDE Pregnancy Childbirth

END-IF

Example 2: If the date of birth supplied by the user occurs prior to January 1, 1900, the Enter

module provides a warning beep and a warning dialog indicating invalid input. However, if

the date of birth supplied is on or after January 1, 1900, the GOTO command is executed

instead taking you to the following page. The example assumes a form exists with the

following fields: DOB (Date). It also assumes a page exists following the page where DOB

resides. The code below would appear in the AFTER section of the DOB field.

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-21

IF DOB < 01/01/1900 THEN

BEEP

DIALOG "Warning: Invalid date of birth detected"

ELSE

GOTO +1

END-IF

Example 3: The date of birth field is validated to ensure correct input. The date of birth field

must not be less than January 1, 1900, must not be greater than the current time, and

must not be greater than the date of the survey. If any of these conditions is not met, a

warning dialog is displayed and the invalid input erased. The example assumes a form

exists with that has the following fields: DOB (Date) and SurveyDate (Date). The code

below would appear in the AFTER section of either DOB or SurveyDate, depending on

whichever one will be filled in last.

IF (DOB < 01/01/1900) OR (DOB > SYSTEMDATE) OR (DOB > SurveyDate) THEN

BEEP

DIALOG "Warning: Invalid date of birth detected"

CLEAR DOB

END-IF

Example 4: An IF command is used to check if a field has been left blank. The example

assumes a form exists with the following field: LastName (Text). The code below would

appear in the AFTER section of the LastName field.

IF NOT LastName = (.) THEN

BEEP

DIALOG "Last name field should not be blank."

END-IF

Example 5: Multiple IF commands are used to generate more than two possible outcomes. The

example assumes a form exists with the following fields: AgeType (Text), AgeYears

(Numeric), and Age (Numeric). The code below would appear in the AFTER section of

AgeType or Age, depending on which one will be filled in last.

IF AgeType = "Days" THEN

ASSIGN AgeYears = Age / 365.25

END-IF

IF AgeType = "Months" THEN

ASSIGN AgeYears = Age / 12

END-IF

IF AgeType = "Years" THEN

ASSIGN AgeYears = Age

END-IF

Example 6: The AND operator requires both Sex to be "F" and Pregnancy to be true in order

for the GOTO command to be executed. The example assumes a form exists with the

following fields: Sex (Text), Pregnancy (Yes/No), and ChildBirth (Yes/No). The code below

would appear in the AFTER section of either Sex or Pregnancy, depending on which one is

filled in last.

IF (Sex = "F") AND (Pregnancy = (+)) THEN

GOTO ChildBirth

END-IF

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-22

Example 7: Several IF commands are used to determine if a patient is ill. If any one of the

symptoms listed in the form are true, the field ill is assigned true. The example assumes a

form exists that has the following fields: Ill (Yes/No), Vomiting (Yes/No), Fever (Yes/No),

and Diarrhea (Yes/No). The code below would appear in the AFTER section of the ill field.

ASSIGN Ill = (-)

IF Vomiting = (+) THEN

ASSIGN Ill = (+)

END-IF

IF Diarrhea = (+) THEN

ASSIGN Ill = (+)

END-IF

IF Fever = (+) THEN

ASSIGN Ill = (+)

END-IF

Example 8: Several IF commands are used to determine the number of symptoms a patient is

presenting with. If the number of symptoms is greater than or equal to two, the Case

variable is assigned true. If the number of symptoms is less than two, the Case variable is

assigned false. The example assumes a form exists that has the following fields: MajorSymp

(Numeric), Vomiting (Yes/No), Fever (Yes/No), Diarrhea (Yes/No), and Case (Yes/No).

ASSIGN MajorSymp = 0

IF Diarrhea = (+) THEN

ASSIGN MajorSymp = MajorSymp + 1

END-IF

IF Fever = (+) THEN

ASSIGN MajorSymp = MajorSymp + 1

END-IF

IF Vomiting = (+) THEN

ASSIGN MajorSymp = MajorSymp + 1

END-IF

IF MajorSymp >= 2 THEN

ASSIGN Case = (+)

ELSE

ASSIGN Case = (-)

END-IF

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-23

NEWRECORD

Description

This command saves the current records data and opens a new record for data entry.

Syntax

NEWRECORD

Example

DIALOG "This is the last field in my form."

NEWRECORD

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-24

Analysis Commands

ASSIGN

Description

This command assigns numeric or string expression results to a variable. It may be a

database variable in a form or data table, or a user-defined variable created by the DEFINE

command in a program.

Syntax

ASSIGN <variable> = <expression>

LET <variable> = <expression>

(ASSIGN and LET may be omitted)

<variable> = <expression>

 The <variable> represents a variable in a database or a defined variable created in a

program.

 The <expression> represents any valid arithmetic or string expression.

Program Specific Feature

If the right side of the assignment does not contain a field variable (one in a database

table), or a variable that depends on a field variable, the assignment is made immediately.

DEFINE YEAR NUMERIC

ASSIGN YEAR = 2000

The following code contains two view variables, ONSETDATE and EXPOSUREDATE.

DEFINE INCUBATION NUMERIC

ASSIGN INCUBATION = ONSETDATE-EXPOSUREDATE

In this example, INCUBATION is only calculated during current dataset processing. It is

calculated for each record and may be used similar to a dataset variable in procedures (i.e.,

TABLES, FREQ, and GRAPH). Prior to and after processing a dataset, INCUBATION will

have a "missing" value, although it could be assigned a value with another statement (e.g.,

INCUBATION = 999).

The value is calculated each time a record that meets the conditions of SELECT is read

from the dataset. Any legal expression can be used that combines functions or literal values

and operators (i.e., &, +, -, *, /, ^, and MOD). Boolean expressions are not supported in

assign commands. Standard variables that depend on database fields must be saved to a

table using WRITE before they can be edited using LIST UPDATE.

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-25

Comments

Temporary variables must be defined before being used and will accept any type of data

(i.e., text, numeric, or date). Once they have been assigned a non-missing value or an

expression, their type cannot change.

If an attempt is made to assign an invalid expression to a variable, it retains any previous

assignment.

Examples

Example 1: The ASSIGN command is used to assign values to defined variables and database

variables. Note that literal values (e.g., 42, other variables, and functions) can be used on

the right side of the = operator.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Surveillance

DEFINE State TEXTINPUT

ASSIGN City = "Atlanta"

ASSIGN State = "GA"

ASSIGN Address = City & ", " & State

DEFINE Now DATEFORMAT

ASSIGN Now = SYSTEMTIME

DEFINE Duration NUMERIC

ASSIGN Duration = YEARS(01/01/1998, ReportDate)

DEFINE Ill YN

ASSIGN Ill = (-)

ASSIGN Age = 42

ASSIGN Occupation = "Doctor"

LIST Address City State Duration Now Ill Occupation Age GRIDTABLE

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-26

BEEP

Description

This command generates a sound.

Syntax

BEEP

Example

If the number of records in the database is greater than 1,000, a beep is generated and a

dialog box appears.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Surveillance

IF RECORDCOUNT > 4 THEN

BEEP

DIALOG "Database greater than 4 records."

END

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-27

CANCEL SELECT or SORT

Description

This command cancels a previous SELECT or SORT command.

Syntax

SORT

SELECT

Comments

The Cancel Select and Cancel Sort commands automatically close the current output file.

Example

The commands below should be run one-by-one to better understand how the cancel sort

and cancel select commands function.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

SELECT Ill = (+)

LIST Age Ill Sex

SELECT

SORT Age

LIST Age Ill Sex

SORT

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-28

CLOSEOUT

Description

This command closes the current output file. It is normally used after a ROUTEOUT

command when all the information to be included in the ROUTEOUT file has been

produced.

Syntax

CLOSEOUT

Example

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

ROUTEOUT “C:\ My_Project_Folder \Outbreak1.htm” REPLACE

TABLES Vanilla Ill STRATAVAR=Sex

MEANS Age Ill

CLOSEOUT

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-29

COXPH

Description

This command performs Cox-Proportional Hazards and Extended Cox-Proportional

Hazards survival analysis. This form of survival analysis relates covariates to failure

through hazard ratios. A covariate with a hazard ratio greater than one causes failure. A

covariate with a hazard ratio less than one improves survival. Some of the subjects may be

unavailable prior to failure; the term "censored" is applied to them. COXPH is especially

constructed to deal with this situation. Statistics showing the risk set by group and time

can be written to an OUTTABLE for later formatting.

Syntax

COXPH <time variable>= <covariate(s)>[: <time function>:] * <censor variable>

(<value>) [TIMEUNIT="<time unit>"] [OUTTABLE=<tablename>] [GRAPHTYPE="<graph type>"]

[WEIGHTVAR=<weight variable>] [STRATAVAR=<strata variable(s)>] [GRAPH=<graph

variable(s)>]

 The <time variable> represents a numeric or date variable, specifying when failure

or censorship occurred.

 The <covariate(s)> represent a numeric variable, a non-numeric variable, or a

variable specified as non-numeric by parenthesis. Any non-numeric variable, even a

variable specified as non-numeric by surrounding with parenthesis, is automatically

recoded into dummy variables. For all but one of the levels of a variable, a dummy

variable will be created. It measures the contribution of its level to the excluded

level. A covariate may be followed by a time function. This causes COXPH to run the

Extended Cox procedure.

 The <time function> represents a numeric expression involving the time variable.

 The <censor variable> indicates whether the event is a failure or a censor.

 The <value> indicates which value of the CensorVar represents failure.

 The <strata variable(s)> represents a list of variables indicating the different levels

of strata.

 The <weight variable> represents a variable to specify the contribution each data

row has on the output.

 The <time unit> represents a value for labeling the time axis.

 The <tablename> represents a valid table name.

The <graph type> generates one of the indicated graphs:

1. Survival Probability shows the adjusted survival curves.

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-30

2. Observed shows the observed survival curves.

3. Survival-Observed shows the adjusted and observed survival curves.

4. Log-log Survival shows the logarithm of the negative of the logarithm of the

adjusted survival curve.

5. Log-log Observed shows the logarithm of the negative of the logarithm of the

observed survival curve.

6. Hazard Function shows the adjusted hazard function.

7. None

 The <graph variable(s)> represent a list of variables used to generate

survival curves. Graph variables that are covariates or strata variables

create curves adjusted by the covariates at all possible combinations of these

graph variables. If a variable is numeric, it is plotted at its average value.

Otherwise the graph variable splits the data into separate groups, each with

its own curve.

Comments

COXPH uses the Breslow method to handle ties in the data.

Example

In this example, we will use the Anderson dataset from a clinical trial of leukemia patients

to compare the treatment and placebo group survival.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Anderson

COXPH STIME = (Rx) * Status (1) TIMEUNIT="Weeks" PVALUE=95% GRAPH=Rx

GRAPHTYPE="Survival Probability"

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-31

DEFINE

Description

This command creates a new variable.

Syntax

DEFINE <variable> (<scope>) (<type indicator>)

 <variable> represents the name of the variable to be created.

 <scope> is the level of visibility and availability of the new variable and must be one

of the reserved words STANDARD, GLOBAL, or PERMANENT. If omitted,

STANDARD is assumed and a type indicator may not be used.

 <type indicator> is required and cannot be used if <scope> is omitted. <type

indicator> is the data type of the new variable and must be one of the following

reserved words: NUMERIC, TEXTINPUT, YN, or DATEFORMAT. If omitted, the

variable type will be inferred based on the data type of the first value assigned to the

variable. However, omitting field type is not recommended. Once field type is

defined, the variable type cannot be changed. An error will occur if you attempt to

assign data of a different type to the variable.

Comments

A custom variable defined in Epi Info 7 might not have a predefined data type if the <type

indicator> is omitted when the variable is defined. If the variable does not have a

predefined type and has not been used, the variable will accept a value in any of the four

data types (Text, Number, Date, Yes/No [Boolean]) that is assigned to the variable the first

time. Thereafter, the variable takes on the data type of the value assigned and it’s data

type cannot be changed. However, omitting field type is not recommended. An error will

occur if you attempt to assign data of a different data type. Various functions can be used to

manipulate data, changing data type of values to match the data type of the variable. Some

of these functions include FORMAT, TXTTONUM, TXTTODATE, and NUMTODATE.

Variable Scope

 STANDARD variables retain their value only within the current record and are

reset when a new record is loaded. Standard variables are used temporarily

behaving like other fields in the database. In Classic Analysis, Standard variables

lose their values and definitions with each READ statement.

 GLOBAL variables retain values across related forms and when the program opens

a new form, but are removed when the Classic Analysis program is closed. Global

variables persist during program execution. Global variables are also used to store

values between changes of data source (e.g., when the READ command is used).

Global variables in Classic Analysis may not depend directly or indirectly on table

fields.

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-32

 PERMANENT variables are stored in the EpiInfo.Config.xml file and retain any

value assigned until the value is changed by another assignment or the variable is

undefined. Permanent variables are shared among Epi Info 7 programs (i.e., Menu,

Enter, Classic Analysis, etc.) and persist even if the computer shuts down.

Permanent variables in Classic Analysis may not have values that depend directly

or indirectly on table fields. A <prompt/description> created for a permanent

variable will exist for one session and must be re-established each time it is used.

Type Indicators

 TEXTINPUT - Variables of this data type can receive any alpha-numeric characters

including symbols and the output of functions (e.g., FORMAT).

 NUMERIC - Variables of this data type can receive numbers and the output of

functions (e.g., TXTTONUM).

 DATEFORMAT - Variables of this data type can receive date values including the

output of functions (e.g., TXTTODATE and NUMTODATE).

 YN - Variables of this data type can receive the Boolean values of (+) for Yes and (-)

for No. Until an assignment is made, YN type variable values are (.) or missing.

Example

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Surveillance

DEFINE Birthday DATEFORMAT

ASSIGN Birthday = 01/01/2006

DEFINE HospitalCode NUMERIC

ASSIGN HospitalCode = 854

DEFINE Smoke YN

ASSIGN Smoke = (+)

LIST Birthday HospitalCode Smoke

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-33

DEFINE DLLOBJECT

Description

This command allows you to create an ActiveX (dynamic link library or executable) object.

Syntax

DLL File

DEFINE <variable> DLLOBJECT "<ActiveX name>.<class>"

WSC File

DEFINE <variable> DLLOBJECT "<filename>"

 The <variable> represents the name of the variable to be created.

 The <ActiveX name> represents the internal name of the ActiveX object that

contains the class object for DLL files.

 The <class> represents a class name defined within the DLL.

 The <filename> represents the name of the WSC file where the script component

resides.

Comments

The ActiveX name may not be the same as the actual name of the dll (dynamic link library)

or executable. When an ActiveX object is developed, it is given a project name. This name is

required to create the object. The ActiveX object (executable or dll) must be registered

before it can be used. Windows Scripting Component (WSC) objects can also be used.

Example

DEFINE Week DLLOBJECT "EIEpiwk.Epiweek"

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-34

Define Group Command (Analysis Reference)

Description

This command allows you to create temporary group variables

Syntax

DEFINE <variable> GROUPVAR <variable 1> [<variable 1> ...]

 <variable> represents the new group variable being defined.

 <variable 1> ... represent the existing variables to which the new group variable will

be equivalent.

Program Specific Feature

Field variables, not defined variables must be in the group. Variables in the group may be

from different pages of the same or different forms, in any combination. They may

themselves be group variables, but each variable will be represented in the new group only

once no matter how many times it appears in the variable list or in group variables in the

variable list.

If the group variable being defined exists and is not a group variable, an error message is

displayed and the command is not processed. If it is a group variable, the new variable list

replaces the existing variable list until the next READ or MERGE command or until it is

redefined again. Group variables cannot be undefined.

Comments

This command is useful when there are many variables so that the use of * is impractical or

invalid. Group variables can be used in the LIST and WRITE commands and in some

statistical commands (e.g., FREQ, TABLES, and MEANS). Group variables cannot be used

in Complex Sample commands.

Example

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

DEFINE Exposure GROUPVAR JELLO CAKES VANILLA CHOCOLATE

LIST Exposure

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-35

DELETE FILE/TABLES

Description

This command deletes files, tables, and forms.

Syntax

DELETE filename | wildcard {RUNSILENT}

DELETE TABLES tablename | filename:tablename {RUNSILENT | SAVEDATA}

Comments

Delete file specifies explicitly or implicitly (via wildcards) files to be deleted. If no files are

specified, or if some of the specified files cannot be deleted, a message is produced unless

RUNSILENT is specified. Wildcards are not permitted in the suffix.

Delete table specifies a table to be deleted. If the table does not exist or cannot be deleted, a

message is produced unless RUNSILENT is specified. Unless RUNSILENT is specified, a

confirmatory message is displayed prior to deletion.

To delete tables with spaces in their names, specify both the file and the table even if the

table is in the current project. The table must be enclosed in single quotes. You can read a

table with a space in its name, delete it, causing errors during subsequent procedures. To

delete a table with space in its name, specify the database even if the table is in the current

database.

DELETE TABLES will not delete, and produce a message if any of the specified tables are

data, grid, or program. Code tables are deleted only if they are not referenced by any view.

SAVEDATA does not delete the data tables, but removes the RECStatus property from the

table.

Space is not reclaimed until the Compact utility is run.

Analysis will not delete the current project MDB or any table in use by the current form.

Example

DELETE TABLES Backup2005

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-36

DELETE RECORDS

Description

This command deletes selected records.

Syntax

DELETE * {PERMANENT | RUNSILENT}

DELETE expression {PERMANENT | RUNSILENT}

Comments

All records in the current selection are set to deleted status, or if PERMANENT is specified,

physically deleted. A confirmation message is displayed unless RUNSILENT is selected.

This applies to Access tables and may not be used when using related tables. Use Epi Info

3.5.3 Compact Database utility to reclaim space after deleting tables.

Examples

Example 1: The code below will permanently erase all records in the current data source where

the AgeInDays variable contains a value greater than five. Permanent deletions cannot be

undone.

DELETE AgeInDays > 5 PERMANENT

Example 2: The code below will mark all records in an Epi Info 7 database for deletion. The

UNDELETE Command can restore records that have been marked for deletion.

DELETE *

DIALOG

How to Use the DIALOG Command

Description

This command provides interaction with the user from within a program. Dialogs can

display information, ask for and receive input, and offer lists for making choices.

Syntax

Simple Form

DIALOG "<prompt>" {TITLETEXT="<title>"}

 <prompt> represents the text to be displayed as message.

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-37

 <title> represents the text to be used as the caption for the dialog window. If <title>

is omitted in the Dialog command, "Analysis" will be displayed on the dialog box's

title bar.

Get Variable Form

DIALOG "<prompt>" <variable> <entry type> {TITLETEXT="<title>"}

DIALOG "<prompt>" <variable> "<value 1>", "<value 2>", "<value 3>", … ,"<value n>"

{TITLETEXT="<title>"}

DIALOG "<file type selection>" <variable> READ {TITLETEXT="<title>"}

DIALOG "<file type selection>" <variable> WRITE {TITLETEXT="<title>"}

 <variable> represents the variable to store value entered.

 <entry type> represents a reserved word and/or mask that defines the type of input

to be accepted and stored in the variable. The following are valid entry types:

 TEXTINPUT specifies the input as text.

 YN specifies the input as Boolean.

 DATEFORMAT ("<date mask>") specifies the input as a date; if a date mask

is not specified, the system short date is used.

 "<numeric mask>" specifies the input as numeric. This option is identified as

"Number Only". The numeric mask should be a text string (e.g., "####" or

"##.###") that indicates the type of data to be entered. # indicates a digit.

 If no <entry type> is specified, the input variable is interpreted as a number

if possible. If the value is not a valid number, but is a valid date, it is

interpreted as a date. Otherwise, an error occurs.

 <value> represents a value in a drop-down list of choices. Each value included in the

command will be shown as a single item in the list.

 <file type selection> controls the type of files that are displayed for selection. It

consists of alternating description and filter elements separated by vertical bars.

The description is displayed for you to select. The corresponding filter element

selects the files. If this element is left blank, all files can be selected. Syntax is

created using the File Open and File Save options from the Dialog Format drop

down menu.

List of Values Form

DIALOG "<prompt>" <variable> [<list type>] {TITLETEXT="<title>"}

DIALOG "<prompt>" <variable> DBVALUES <table name> {TITLETEXT="<title>"}

 The [<list type>] are DATABASES and DBVIEWS

Comments

The Simple form of DIALOG places a dialog box on the screen, using the text provided, with

an OK button.

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-38

The Get Variable form of DIALOG displays the text prompt and provides a means for

entering a value.

 If YN is specified, "Yes," "No" and "Cancel" buttons are presented and the specified

variable is set to (+), (-), or (.).

 If TEXTINPUT or no entry type is specified, an entry field for user response is

provided with OK and Cancel buttons. The variable is assigned the value of the

input with a missing value if Cancel is chosen.

 The Get Variable form of the DIALOG command can also display a file selection

dialog. If READ is used, only existing files are displayed. If WRITE is used and an

existing file is selected, you will see the Overwrite? prompt.

 The Multiple Choice form of DIALOG displays the text prompt and provides a

combo box for selecting among the values with OK and Cancel buttons. The variable

is assigned the value of the input with a missing value if Cancel is chosen. Variable

will text type.

 The Date form of the DIALOG command uses a special control for accepting input.

Each section of the date (year, month, and day) can be increased or decreased

independently using the drop down calendar. Using this control, it is impossible to

select an invalid date.

The List of Values form of DIALOG displays a combo box of databases or form variables

with OK and Cancel presented. The variable is assigned the value of your input with a

missing value if Cancel is chosen. Variable will be text type. The VARIABLE VALUE form

of DIALOG displays a combo box of distinct values of the specified variable in the specified

database. The variable is assigned the value of input with a missing value if Cancel is

chosen. The variable will be of the same type as the database variable.

Date Mask

* System Time Format

! System Long Date

Numeric Mask

Digit placeholder (Entry required).

. Decimal placeholder. The actual character

used is the one specified as the decimal

placeholder in the computer's international

settings.

, Thousand separator. The actual character

used is the one specified as the thousands

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-39

Numeric Mask

placeholder in the computer's international

settings.

9 Digit placeholder. (Entry optional).

Punctuation Included in the display.

Custom Formats

D One- or two-digit day.

Dd
Two-digit day. Single-digit day values

are preceded by a zero.

Ddd Three-character weekday abbreviation.

dddd Full weekday name.

H One- or two-digit in a 12- hour format.

Hh

Two-digit hour in a 12-hour format.

Single digit values are preceded by a

zero.

H
One- or two-digit hour in 24-hour

format.

HH

Two-digit hour in a 24-hour format.

Single digit values are preceded by a

zero.

M One- or two-digit minute.

Mm
Two-digit minute. Single digit values

are preceded by a zero.

M One- or two-digit month number.

MM
Two-digit month number. Single digit

values are preceded by a zero.

MMM Three-character month abbreviation.

MMMM Full month name.

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-40

Custom Formats

S One- or two-digit seconds.

Ss
Two-digit seconds. Single- digit day

values are preceded by a zero.

T
One-letter AM/PM abbreviation. AM

displays as A.

Tt
Two-letter AM/PM abbreviation. AM

displays as AM.

Y One-digit year. 1997 displays as 7.

Yy
Last two digits of the year. 1997

displays as 97.

Yyyy Full year. 1997 displays as 1997.

Punctuation Included in the display

Examples

Example 1: A prompt is displayed letting you know that the following commands may take

several minutes to complete because of their complexity.

DIALOG "Warning: This script may take several minutes to complete" TITLETEXT="Warning"

Example 2: The DIALOG command is used to obtain a user-supplied date to calculate the

patient's age. If you do not supply a date (press the Cancel button), the default ending date

contained in the survey data source is used instead.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Surveillance

DEFINE UpdateDate DATEFORMAT

DEFINE SubmitDate Dateformat

ASSIGN SubmitDate = EventDate

DIALOG "Enter a new ending date for survey data:" UpdateDate DATEFORMAT "MM-DD-YYYY"

DEFINE NewAge NUMERIC

ASSIGN NewAge = YEARS(SubmitDate, UpdateDate)

GRAPH NewAge GRAPHTYPE="Column"

Example 3: You will see a drop-down list of choices. The list contains part of the command; in

this case, several counties in the state of Georgia. Your selection is temporarily assigned to

all records in the form.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-41

DEFINE NewCounty TEXTINPUT

DIALOG "Select a county" NewCounty "Fulton", "Baldwin", "DeKalb", "Cobb"

ASSIGN CountyName = NewCounty

LIST CountyName

Example 4: A drop-down list of choices is displayed. Each list item is retrieved from the

X_COORD column of the SohoDead data table.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}::SohoDead

DEFINE Coordinates TEXTINPUT
DIALOG "Select Coordinates" Coordinates DBVALUES SohoDead X_COORD

TITLETEXT="Coordinates"

Example 5: A dialog box prompts you for an image file in JPG or bitmap format. Upon

choosing the file, the full path and filename of the file are saved to the specified variable.

DEFINE FileName TEXTINPUT

DIALOG "Image files|*.bmp;*.jpg;|Allfiles|*.*" FileName READ TITLETEXT="Get image

files"

Example 6: A dialog box is displayed that allows you to enter a number. An input mask is used

to force your input to three whole digits and one decimal digit. Your input is temporarily

assigned to each record in the form.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

DEFINE NewAge NUMERIC

DIALOG "Enter patient age" NewAge "###.#"

ASSIGN Age = NewAge

LIST Age

Example 7: A dialog box is displayed that allows you to enter a number. An input mask is used

in order to force your input to either one or two whole digits and one decimal digit. (The 9

represents an optional digit.) Your input is temporarily assigned to each record in the form.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

DEFINE NewAge NUMERIC

DIALOG "Enter patient age" NewAge "9##.#"

ASSIGN Age = NewAge

LIST Age

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-42

DISPLAY

Command Generator

How to Use the DISPLAY Command

Description

This command displays table, form, and database information.

Syntax

DISPLAY <option> [<sub-option>] [OUTTABLE=<tablename>]

 The <option> determines the type and source of information displayed.

 The <tablename> represents the name of the data output table to receive results

(optional).

 The [<sub-option>] refers to the type of displayed information.

1. Option DBVARIABLES - displays information about variables. Sub-option

DEFINE displays only defined variables. Sub-option FIELDVAR displays

only table/view variables for the current READ and RELATE tables. Sub-

option LIST followed by a list of variable names displays only the specified

variables.

2. Option DBVIEWS - displays information about forms and other Epi Info 7

specific tables in a database. The sub-option is the path of the database.

Omitting the sub-option displays information for the current project

database.

3. Option TABLES - displays information about tables in a database, whether

Epi Info 7 specific or generic. The sub-option is the path of the database.

Omitting the sub-option displays information for the current project

database.

Examples

Example 1: The DISPLAY command is used to show the tables, forms, and variables from an

existing data source.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

DISPLAY TABLES

DISPLAY DBVIEWS

DISPLAY DBVARIABLES

Example 2: All forms in the Sample database are displayed.

DISPLAY DBVIEWS 'C:\Epi_Info_7\Projects\Sample\Sample.prj’

Example 3: All tables in the Sample database are displayed.

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-43

DISPLAY TABLES 'C:\Epi_Info_7\Projects\Sample\Sample.prj’

Example 4: All variables in Oswego are written to a new table in the Sample database called

VarInfo.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

DISPLAY DBVARIABLES OUTTABLE=VarInfo

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-44

EXECUTE

Description

This command executes a Windows program; one explicitly named in the command, or one

designated within the Windows registry as appropriate for a document with a named file

extension. This provides a mechanism for bringing up whatever word processor or browser

is the default on a computer without first knowing its name.

If the pathname is a long filename, it must be surrounded in single quotes. If the command

takes parameters, surround the command and the parameters with a single set of double

quotes. Do not use single quotes.

Program Specific Feature

Link and Activate are not valid command names.

Syntax

EXECUTE <filename>

EXECUTE "<filename> <command-line parameters>"

EXECUTE NOWAITFOREXIT <filename>

EXECUTE NOWAITFOREXIT '<filename>'

EXECUTE NOWAITFOREXIT "<filename>"

EXECUTE WAITFOREXIT <filename>

EXECUTE WAITFOREXIT '<filename>'

EXECUTE WAITFOREXIT "<filename>"

 The <filename> represents the path and program name for .exe (filename for

registered Windows programs) and .com (filename for MS-DOS binary executable)

files.

 The <command-line parameters> represent any additional command-line arguments

that the program can accept. When used, the entire string should be enclosed within

double quotes.

 When Wait for Command to Execute (modal) is specified, the command and Analysis

should run. When Wait for Command to Execute is not specified (non-modal),

Classic Analysis should wait until the executed program closes before continuing.

When EXECUTE is run modally, permanent variables are written before the

command is executed, and reloaded after the command is executed.

Comments

If the name given is not a program, but a file with an extension (the three characters after

the ".") registered by Windows for displaying the document, the correct program to display

the file will be activated (i.e., WRITEUP.DOC might cause Microsoft Word © to run and

load the file on one computer). On another machine, however, .DOC might correspond to

Corel WordPerfect©. Usually .TXT will run NOTEPAD.EXE© or WORDPAD.EXE©, and

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-45

image files will appear in a browser or in a graphics program. An .HTM file will bring up

the default browser.

Examples

Example 1: The EXECUTE command is used to start the Enter module. The command-line

parameter is used to load the Oswego Form from the Sample database.

EXECUTE "C:\Epi Info 7\

Epi Info 7\Enter.exe"

Example 2: The output file generated (in this case, Outbreak1.htm) is opened in the

computer's default web browser.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

ROUTEOUT “C:\Epi Info 7\Epi Info 7\Output\Outbreak1.htm' REPLACE

SET STATISTICS=COMPLETE

TABLES Vanilla Ill STRATAVAR=Sex

MEANS Chocolate Ill

CLOSEOUT

EXECUTE “C:\Epi Info 7\Epi Info 7\Outbreak1.htm”

FREQ

Description

FREQ produces a table from the table(s) specified in the last READ statement, showing

how many records have each value of the variable. Exact Confidence limits for each

proportion are included.

Syntax

FREQ [<variable(s)>] {<settings>}

FREQ * {EXCEPT [<variable(s)>]} {<settings>}

 <variable(s)> represents one or more variable names. Group variables may be used.

 <settings> represent clauses from the SET command indicating a value of a setting

(except PROCESS and HYPERLINKS) which will be used for the duration of the

statistical command only.

Comments

Records may be included or excluded from the count by using SELECT statements. Those

marked as deleted in Enter will be handled according to the current setting for SET

PROCESS. If more than one variable name is given, FREQ makes a separate table for each

variable. Confidence limits for the binomial proportions are produced.

If a WEIGHTVAR is specified, the value of the WEIGHTVAR variable is treated as a count

of instances of the variable being computed in the frequency (i.e., in the following command

a record containing the value 30 for AGE and 15 for COUNT would give a result equivalent

to 15 individuals of age 30).

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-46

FREQ AGE WEIGHTVAR = COUNT

If STRATUM is specified, a separate frequency is produced for each stratifying variable

value.

FREQ ILL STRATAVAR=SEX, produces a table showing ILL (Yes/No/Unknown) for

males and another for females. The same numbers can be obtained using TABLES ILL

SEX, but the latter produces results in one table rather than in separate tables, and

produces statistics to test for an association between ILL and SEX.

FREQ * makes a table for each variable in the current form other than unique identifiers.

It is often used to begin analyses of a new data set.

To do frequencies of all variables except a few, use FREQ * EXCEPT VarName(s) followed

by the names of the variables to be excluded.

Multiline (memo) variables cannot be used in Frequencies. To use a Multiline variable,

define a new variable and assign to it the value SUBSTRING(<old variable>,1,255) and use

it in the frequency.

Examples

Example 1: The number of ill and healthy people are displayed along with their percentages

and the total.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

FREQ Ill

Example 2: In this case, the variable 'Desserts' is a group variable containing the Yes/No

variables Chocolate, Vanilla, and Cakes. Running a frequency on a group variable

automatically runs a frequency on every variable contained in the group.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

FREQ Desserts

Example 3: A frequency on two variables is produced. In this case, BakedHam and Milk.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

FREQ BakedHam Milk

Example 4: A frequency on every variable in the current data source is produced.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

FREQ *

Example 5: A frequency on every variable in the current data source (except Age, Code_RW,

DateOnset, Name and TimeSupper) is produced.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

FREQ * EXCEPT Age Code_RW DateOnset Name TimeSupper

Example 6: A frequency of ill people is produced, stratified by sex. Using the stratification

option will produce two frequencies. In this case, males and females.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

FREQ Ill STRATAVAR=Sex

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-47

Example 7: A weighted frequency is conducted. For each record, the value stored in Count is

used to represent that record's weight.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Lasum

FREQ Outcome WEIGHTVAR=Count

Example 8: A complex sample frequency is run using the Epi1 data set.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Epi1

SET STATISTICS=COMPLETE

FREQ VAC PSUVAR=Cluster

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-48

GRAPH

Description

This command produces graphs from data in Classic Analysis.

Syntax

GRAPH [<variable(s)>] GRAPHTYPE="<graph type>" [<option name>=option value]

GRAPH [<variable(s)>] * <crosstab> GRAPHTYPE="<graph type>"

GRAPH [<variable(s)>] GRAPHTYPE="<graph type>" XTITLE="<string>" YTITLE="<string>"

 The <variable(s)> represents the (main) variable(s) to be graphed.

 The <crosstab> represents a variable to be used to classify the main variable(s).

 The <graph type> represents one of the graph types described below.

 STRATAVAR=<variable> generates a graph for each value of VarName. When

saving a template, the template stores the current graph's background including the

main title and the subtitle if it exists. However, if the sub-title is stratified (under

"One Graph for Each Value of" in the dialog screen), it will be filtered out.

 WEIGHTVAR=<variable> weights each record by the value of <VarName>.

 WEIGHTVAR=<agg func>(<variable>) allows multiple records referring to the

same values of the main variable, crosstab variable (if any), and strata variable (if

any) are represented by the aggregate of VarName. Permissible AggFunc values are

MIN (minimum), MAX (maximum), AVG (average), STDEV (standard deviation),

SUM, SUMPCT (percent based on total of VarName), COUNT (number of records),

or PERCENT (percent based on number of records).

 TITLETEXT="<string>" represents a title for each page of graphs. This title is in

addition to the title for each graph, which is set by customization.

 DATEFORMAT="<format string>" is used when a main variable is a date

variable to determine the format in which it will be displayed. Uses the same coding

scheme as the FORMAT function.

 XTITLE="<string>", YTITLE="<string>" are used to pass X- and Y-axis labels

from the GRAPH command.

Program Specific Feature

Multiline (memo) fields cannot be graphed. To use a Multiline variable, define a new

variable, assign to it the value SUBSTRING(<old variable>,1,255), and use it in the graph.

The following are the graph types capable of being generated by the GRAPH command

along with type-specific information ("series" refers to the values of a main variable for a

specific value of any crosstab and strata variables):

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-49

 Line graphs connect X-Y points with lines. The main variables are the X and Y

variables. Each series is represented by a different style of line. Both variables must

be numeric. To generate a line graph with categorical data, generate a Bar graph

and use customization.

 Column graphs use vertical bars to represent the count or weight for each value of

the main variable(s). Each series results in an additional vertical bar at each point;

the bars are distinguished by their style.

 Bar graphs use horizontal bars to represent the count or weight of each value of the

main variable(s). Each series creates an additional horizontal bar at each point.

 Epi Curve use vertical bars to represent the count or weight for each value of the

main variable. Each series creates an additional vertical bar at each point. The main

variable must be numeric. This graph differs from the bar graph because adjacent

bars represent equal ranges of the main variable.

 Pie in which each series is represented by a circle, and each value of the main

variable has a slice of the circle proportional to the value associated with it.

 Area is similar to a line, except that the area below the line contains a solid fill.

 Scatter graphs display X-Y points as a scatter gram. The main variables are X and

Y variables. Each series is represented by a different style of point.

 Bubble graphs are a variation of a Scatter chart in which the data points are

replaced with bubbles. A Bubble chart can be used instead of a Scatter chart if your

data has three data series.

Examples

Example 1: A graph showing the age of all survey respondents is displayed.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

GRAPH Age GraphType="Column"

Example 2: A pie chart showing age categories is displayed.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

DEFINE AgeCategory TEXTINPUT

RECODE Age TO AgeCategory

LOVALUE - 0 = "Unknown"

0 - 10 = "0 - 10"

10 - 20 = "11 - 20"

20 - 30 = "21 - 30"

30 - 50 = "31 - 50"

50 - 70 = "51 - 70"

javascript:AppendPopup(this,'100638644_2')

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-50

70 - HIVALUE = ">70"

END

GRAPH AgeCategory GRAPHTYPE="Pie" TITLETEXT="Church Supper Attendees"

Example 3: A scatter graph is displayed showing age by time of supper.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

GRAPH TimeSupper Age GRAPHTYPE="Scatter XY"

Example 4: A graph showing the number of ill persons and vanilla eaters is displayed using

the form for the Oswego outbreak investigation.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

FREQ Vanilla Ill STRATAVAR=Sex OUTTABLE=VanillaOut

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:VanillaOut

SELECT Vanilla = (+) OR Ill = (+)

SET Missing = (-)

DEFINE Vanilla2 YN

DEFINE Ill2 YN

IF Ill = (+) THEN

ASSIGN Ill2 = Sex

END

IF Vanilla = (+) THEN

ASSIGN Vanilla2 = Sex

END

GRAPH Ill2 Vanilla2 GRAPHTYPE="Bar" TITLETEXT="Number of Ill Persons and Vanilla Eate

rs by Sex" WEIGHTVAR=Count

Example 5: An Epi Curve showing the incubation time for an unknown pathogen is

displayed. Note that the DIALOG=(-) parameter ensures the graph window does not

appear. Instead, the graph is generated and sent to the Analysis output window. This

option can be useful when running automated scripts since it does not require user

interaction to continue processing commands.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

DEFINE Incubation NUMERIC

ASSIGN Incubation = MINUTES(TimeSupper, DateOnset) / 60

GRAPH Incubation GRAPHTYPE="Epi Curve" XTITLE="Incubation Period (Hours)"

YTITLE="Number of Cases"

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-51

IF THEN ELSE

Description

This command defines conditions and one or more consequences which occur if the

conditions are met. An alternative consequence can be given after the ELSE statement. The

ELSE will be executed if the first set of conditions is not true. If the condition is true, the

first statement is executed. If the statement is false, the statement is bypassed. If an ELSE

statement exists, it is executed instead. THEN is part of the If Condition statement. It

starts the section of code executed when the If condition is true.

Syntax

IF <expression> THEN

[command(s)]

END

IF <expression> THEN

[command(s)]

ELSE

[command(s)]

END

 The <expression> represents a condition that determines whether or not subsequent

commands will be run. If the condition evaluates to true, the commands inside of the

IF block will run. If the condition evaluates to false, the commands inside of the

ELSE block will run instead. If no ELSE exists and the condition is false, then no

commands inside of the IF block are run.

 The [command(s)] represents at least one valid command.

 The ELSE statement is optional and will run any code contained inside of it when

the <expression> evaluates to false.

Comments

An IF statement is executed immediately if it does not refer to a database variable, if

characteristic or attribute that can be measured, or if any defined variables have been

assigned literal values. If the statement, YEAR = 97 has already occurred, then an IF

statement dependent on it, such as IF YEAR = 97 then …., is executed immediately.

IF Age > 15 THEN

ASSIGN Group = "ADULT"

ELSE

ASSIGN Group = "CHILD"

END

It is important to cover all the conditions in IF statements to avoid gaps in the logic and

results. Sometimes it is important to have an ELSE condition that covers conditions not

included in other IF clauses. This effect is best achieved by setting the variable initially to

something other than missing.

DEFINE ILL YN

ASSIGN ILL = (-)

IF Vomiting = (+) THEN

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-52

ASSIGN ILL = (+)

END

IF Diarrhea = (+) THEN

ASSIGN ILL = (+)

END

IF Fever = (+) THEN

ASSIGN ILL = (+)

END

Set Ill = (+) only if one or more symptoms are present.

The same result could be achieved with this code:

IF (Diarrhea = (+)) OR (Vomiting = (+)) OR (Fever = (+)) THEN

ASSIGN ILL = (+)

ELSE

ASSIGN ILL = (-)

END

Examples

Example 1: The Group variable for all records in the data set is assigned the value of

"Young Adult" if the Age variable has a value between (but not including) 17 and 30. If the

value in Age falls outside of this range, no value is assigned to Group.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

DEFINE Group TEXTINPUT

IF Age < 30 AND Age > 17 THEN

ASSIGN Group = "Young Adult"

END

LIST Group

Example 2: Several different values are assigned to the Group variable depending on the

value of the Age variable.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

DEFINE Group TEXTINPUT

IF Age < 30 AND Age > 17 THEN

ASSIGN Group = "Young Adult"

END

IF Age <= 17 THEN

ASSIGN Group = "Minor"

END

IF Age >= 30 THEN

ASSIGN Group = "Adult"

END

LIST Group

Example 3: If the patient ate chocolate or vanilla ice cream, the variable IceCream is

assigned a value of true. Otherwise, it is assigned a value of false.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

DEFINE IceCream YN

IF Vanilla = (+) OR Chocolate = (+) THEN

ASSIGN IceCream = (+)

ELSE

ASSIGN IceCream = (-)

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-53

END

LIST Vanilla Chocolate IceCream

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-54

KMSURVIVAL

Description

This command performs the Kaplan-Meier Survival Analysis and produces graphs and

statistics for one or several groups of subjects being followed in a clinical study. At any

given time, some of the subjects may be "censored," not having information available on

their status. KMSurvival is especially constructed to deal with this situation. Statistics

showing the risk set by group and time can be written to an OUTTABLE for later

formatting.

Syntax

KMSURVIVAL <time variable>=<group variable> * <censor variable> (<value>)

[TIMEUNIT="<time unit>"] [OUTTABLE=<tablename>] [GRAPHTYPE="<graph type>"]

[WEIGHTVAR=<weight variable>]

 The <time variable> represents the variable specifying the time of the event.

 The <group variable> represents the variable that indicates to which treatment

or control group the subject belongs.

 The <censor variable> represents the variable to describe an event as failure or

censored.

 The <value> represents the value of the censor variable indicating uncensored

(failure).

 The <time unit> represents a value for labeling the time axis.

 The <graph type> represents the following:

 Survival Probability is the observed survival over the different groups.

 Log-Log Survival is the log of the negative log of the survival probability.

 None does not produce a graph. If no graph type is specified, the default

Survival Probability curve is plotted.

 The <weight variable> represents a variable in the database that specifies the

contribution or each data row to the output.

Example

The commands below show a comparison between two groups.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Addicts

KMSURVIVAL Survival_Time_Days = Clinic * Status (1) TIMEUNIT="Days"

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-55

LIST

Description

This command does a line listing of the current dataset. If variable names are given, LIST

displays only these variables. LIST * displays all variables of all active records. LIST *

EXCEPT displays all variables of all active records except those named.

Syntax

LIST {* EXCEPT} [<variable(s)>] LIST {* EXCEPT} [<variable(s)>] {GRIDTABLE}

 The * asterisk is used to represent all variables

 The <variable(s)> represents one or more variable names.

 The keyword GRIDTABLE specifies that data is displayed as a grid for viewing only,

instead of HTML format.

Comments

Adding an EXCEPT Variable list excludes all the named variables from a LIST or LIST *.

If the dataset has been sorted with the SORT command, the records are listed in sorted

order. Otherwise, they are listed in an order determined by the database.

Examples

Example 1: All variables are listed using the grid format.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

LIST * GRIDTABLE

Example 2: The Age variable is listed using the web (HTML) format.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

LIST Age

Example 3: The variables Sex, Vanilla, Chocolate, Ill, and Age are listed using the grid

format.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

LIST Sex Vanilla Chocolate Ill Age GRIDTABLE

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-56

LOGISTIC

Description

This command performs conditional or unconditional multivariate logistic regression with

automatic dummy variables and support for multiple interactions.

Syntax

LOGISTIC <dependent variable> = <independent variable(s)> [MATCHVAR=<match variable>]

[NOINTERCEPT] [OUTTABLE=<tablename>] [WEIGHTVAR=<weight variable>] [PVALUE=<PValue>]

 The <dependent variable> represents the dependent variable.

 The <independent variable(s)> represents an independent variable that can be a

numeric variable, a non-numeric variable, or a variable surrounded by parenthesis.

Any text or yes-no variable, or a variable surrounded with parenthesis, is

automatically recoded into dummy variables. A dummy variable is created for all

but one of the levels of a variable. The variable measures the contribution of its level

relative to the excluded level. Interactions are specified by * between variables.

 The <weight variable> represents a variable to specify the contribution each data

row has to the output.

 The <match variable> represents a variable to specify the different groups for a

conditional analysis. If a match variable is specified, a conditional analysis will be

performed

 The <tablename> represents a table where the residuals are stored. If no table name

is present, no residuals are produced.

 The <PValue> represents the size of the confidence intervals; this may be specified

as percent or decimal. If greater than .5, 1-PValue is used. The default is 95%.

Comments

LOGISTIC uses the Newton-Rhapson method for maximizing likelihood.

Example

To do an unconditional regression, run the following:

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

LOGISTIC Ill = BrownBread CabbageSal Water Milk Chocolate Vanilla

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-57

MEANS

Description

This command is used to compute descriptive statistics for a continuous (numeric) variable.

When used with a cross-tabulation variable, it also computes statistics showing the

likelihood that the means of the groups are equal. The mean of a yes-no variable is the

proportion of respondents answering yes.

Syntax

MEANS <variable 1> {<variable 2>} {STRATAVAR=<variable(s)>} {WEIGHTVAR=<variable>}

{OUTTABLE=<tablename>}

 <variable 1> represents a numeric variable to be used to calculate means (or * for

all numeric variables).

 <variable 2> represents any variable used for cross-tabulation (optional).

 <variable(s)> represent variable(s) to be used for stratified analysis.

 <variable> represents a variable containing the frequency for the event.

 <tablename> represents a name for a table to be created.

Comments

The MEANS command has two formats. If only one variable is supplied, the program

produces a table similar to one produced by FREQUENCIES, plus descriptive statistics. If

two variables are supplied, the first is a numeric variable containing data to be analyzed

and the second is a variable that indicates how groups will be distinguished. The output of

this format is a table similar to one produced by TABLES, plus descriptive statistics of the

numeric variable for each value of the group variable.

Multiline (memo) variables cannot be used in MEANS. To use a Multiline variable, define a

new variable and assign to it the value SUBSTRING(<old variable>,1,255) and use it in the

means.

The f-test which is generated from MEANS is a generalization of the t-test. The t-test only

works with two groups while the f-test works with any number of groups.

MEANS produces the following statistical tests:

 Parametric

 ANOVA (for two or more samples)

 Student's t-test (for two samples)

 Non-parametric

 Kruskal-Wallis one-way analysis of variance (for two or more samples)

 Mann-Whitney U = Wilcoxon Rank Sum Test (for two samples)

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-58

Examples

Example 1: Descriptive statistics for the age variable are displayed, including the number of

observations, the total, the mean, variance, standard deviation, 25%, median, 75%,

maximum, minimum, and mode.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

MEANS Age

Example 2: The MEANS command is used to compare two means. An independent t-test

and one-way analysis of variance (ANOVA) is performed.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:EvansCounty

MEANS CHL CHD

Example 3: The average number of cigarettes smoked between males and females is

determined.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Smoke

MEANS NumCigar Sex STRATAVAR=Strata WEIGHTVAR=SampW PSUVAR=PSUID

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-59

MERGE

Description

This command merges records in one dataset with those in another the Global Record

Identifier contained in every Epi Info 7 project to establish the match between records.

Records in the second dataset that do not have matching keys can be appended to the end of

a dataset. Records in the second dataset that do have matching keys can be used to update

records in the main dataset. Records in the second dataset can be used as the parent in

defining an Epi Info 7 parent-child relationship after records have been merged into the

parent and child forms.

Syntax

MERGE <table specification> {LINKNAME=<text>} [<key(s)>] <type>

 The <table specification> represents the type and name of a data table to be read as

the Merge file.

The <key(s)> represent the Global Record Identifier on which the match or relate

will be performed. These are in the form:

<ExpressionCurrntTable>::<ExpressionMergeTable>

 The <MergeType>, may be APPEND, UPDATE or RELATE. If no type is specified,

APPEND and UPDATE are performed. For matching records, UPDATE replaces the

value of any field in the READ table whose name matches in the MERGE table with

the value from the MERGE table unless it has a missing value. For unmatched

records, APPEND creates a new record in the READ table with values only for those

fields which exist in the MERGE table.

 Currently, Merge is only supported when the READ and MERGE data source is an

Epi Info 7 project.

Comments

APPEND adds unmatched records in the Merge table to the currently active dataset. Only

fields found in both datasets are added.

UPDATE replaces fields of records in the active table with those in the Merge table if the

key expressions match. Only fields found in both datasets with a non-empty value in the

Merge table are replaced.

RELATE moves the unique key of the current table to the foreign key of the related table to

make a permanent relationship. The related (Merge) table must be an Access/Epi2000

table. The READ table and the RELATE tables must be Epi Info forms. READ

{C:\Epi_Info_7\Projects\Sample\Sample.prj}:

Example

MERGE {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Surveillance GlobalRecordId ::

GlobalRecordId

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-60

PRINTOUT

Description

This command sends the contents of the current output file (the one visible in the output

window) or some other specified file to the default printer.

Syntax

PRINTOUT <filename>

Example

The output file Oswego.txt is sent to the printer.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

WRITE REPLACE "Text" 'C:\Epi_Info\Oswego.txt' *

PRINTOUT 'C:\Epi_Info\Oswego.txt'

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-61

QUIT

Description

This command closes the current data files and terminates the current program, closing

Classic Analysis.

Syntax

QUIT

Program Specific Features

Quit will stop the execution of a program and close Classic Analysis. If there is no QUIT at

the end of a .PGM program, Classic Analysis continues to run and offer user-interaction.

Example

You are presented with a dialog box asking if you want to close Analysis. Selecting 'Yes'

closes Classic Analysis.

DEFINE Results YN

DIALOG "Do you wish to close Analysis?" Results YN

IF Results = (+) THEN

QUIT

END

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-62

READ

Description

This command makes one or more forms the active dataset. It also removes any previously

active datasets and associated defined variables and dataset-specific commands (e.g.,

RELATE, SORT, SELECT or IF statements).

Syntax

READ <table specification> FMT="<file format>" UID="<username>" PWD="<password>" END

The <table specification> and FILESPEC are referred to in the following paragraphs:

The READ, RELATE, and MERGE commands can operate on many different types of

data. Each type requires a different table specification, and some types required

additional information in a file specification. Table specifications usually consist of a

data type (contained in double quotes), a space, a file path (which may be enclosed in

single quotes, and must be if it includes a space), a colon, and a table name.

The various file types that can be used are:

 Epi Info 7 Forms and Tables

 Microsoft Access 97-2003 and MS Access 2007

 Microsoft Excel 97-2003 and Excel 2007

 SQL Server – Server name and Database name will be required when

accessing tables within an SQL Server database.

 Text Files – There are two basically different forms of text files. Both

forms have only one table per file, so there is no need to specify a table.

Both forms put the data for one record on a single line. The difference is

in how the fields are indicated. One form, called "delimited," uses

designated characters to separate fields. The second form, shown in the

fourth example, is called "fixed" because each field occupies the same

positions in each line. All character positions through the last field must

be accounted for even if they do not contain useful data (the command

generator will automatically generate filler fields as required). Even if the

first line of the file contains field names (HDR="YES"), the names

specified in field definitions will be used. The text file driver actually

reads the file into the database, so changes made to the file after the

READ will not be saved and changes made through Epi Info will not be

saved to the text file (unless it is rewritten with the WRITE REPLACE

command, which is available only in CSV format).

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-63

Examples

Example 1: If the file/form was previously accessed, the Oswego Form is read

READ {config:Sample.prj}:Oswego

Example 2: The Oswego Form is read. Unlike in example 1, the full path to the database file is

specified.

READ {C:\Epi Info 7\Epi Info 7\Projects\Sample\Sample.prj}:Oswego

Example 3: If a space appears in the table name in Access, it must be enclosed in square

brackets.

READ {C:\Epi Info 7\Epi Info 7\MyData}:[Table Name with Spaces]

Example 4: An Excel spreadsheet is read.

READ {C:\Epi Info 7\Epi Info 7\PlagueData.xls}:[Plague$]

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-64

RECODE

Description

This command is used to change some or all the values of a variable. New values can be

stored in the same variable or in a new one. It can also be used to convert a numeric

variable into a character variable or the reverse, or to create a new variable based on

recoded values of an existing variable.

Syntax

RECODE <variable1> TO <variable2>

value1 - value2 = <recoded value>

value1 – HIVALUE = <recoded value>

LOVALUE - value2 = <recoded value>

value3 = <recoded value>

ELSE = <recoded value>

END

 The <variable1> represents the donor variable (where the values are).

 The <variable2> represents the receiver variable (where recoded values will be).

Comments

Text values must be enclosed in quotation marks; numeric, date; yes/no values must not.

All recoded values must be of the same type. Numeric ranges are separated by a space,

hyphen, and space, as in 1 - 5. Negative values are permitted (i.e.,-10, -9, and -8). The

words LOVALUE and HIVALUE may be used to indicate the smallest and largest values

representable in the database. The word ELSE may be used to indicate all values not

falling in the preceding ranges. Recodes take place in the order stated; if two ranges

overlap, the first in order will apply. Analysis cannot RECODE more than about 12 levels of

values. If this is a problem, do as many recodes as possible, write a new table, READ it, and

do more recodes.

Examples

Example 1: The RECODE command is used to generate an age range.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

DEFINE AgeRange TEXTINPUT

RECODE Age TO AgeRange LOVALUE - 0 = "<=0" 0 - 10 = ">0 - 10"= 10 - 20 = ">10 - 20" 20

- 30 = ">20 - 30" 30 - 40 = ">30 - 40"

40 - 50 = ">40 - 50"

50 - 60 = ">50 - 60"

60 - 70 = ">60 - 70"

70 - 80 = ">70 - 80"

80 - 90 = ">80 - 90"

90 - 99 = ">90 - 99"

99 - HIVALUE = ">99"

END

LIST Age AgeRange

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-65

Example 2: The RECODE command is used to generate an age range. The ELSE clause

ensures that any values not captured in the recoding process are assigned a default value.

In this case, any values greater than 60 are assigned "Senior."

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

DEFINE AgeRange TEXTINPUT

RECODE Age TO AgeRange

LOVALUE - 0 = "<=0"

0 - 10 = ">0 - 10"

10 - 20 = ">10 - 20"

20 - 30 = ">20 - 30"

30 - 50 = ">30 - 50"

50 - 65 = ">50 - 65"

ELSE = "Senior"

END

LIST Age AgeRange

Example 3: The RECODE command is used to generate a detailed age range from 0 to 70 in

increments of three. Note that a single RECODE command is limited to approximately 12

conditions because of query size limitations inherent in the Access database format. The

desired age categories would require more than 12 recodes. To work around this problem,

only 10 recodes are done at a time and are separated by a series of SELECT, WRITE, and

READ commands. The first WRITE command creates a new temporary table (or overwrites

an existing one) that stores only records that contain recoded values. The remaining records

are not written out because of the SELECT command. Each subsequent block of recoded

values is written to the same file using the APPEND parameter. By the time the code is

done executing, the table T1 contains all of the recoded data.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

DEFINE AgeRange TEXTINPUT

RECODE AGE TO AgeRange

LOVALUE - 0 = "<=0"

0 - 3 = ">0 - 3"

3 - 6 = ">3 - 6"

6 - 9 = ">6 - 9"9 - 12 = ">9 - 12"

12 - 15 = ">12 - 15"
15 - 18 = ">15 - 18"

18 - 21 = ">18 - 21"
21 - 24 = ">21 - 24"

24 - 27 = ">24 - 27"

END

SELECT NOT AgeRange = (.)

WRITE APPEND "Epi7" {Provider=Microsoft.Jet.OLEDB.4.0;Data

Source="{C:\Epi_Info_7\Projects\Sample\Sample.prj}: T1 *

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

DEFINE AgeRange TEXTINPUT

RECODE Age TO AgeRange

27 - 30 = ">27 - 30"

30 - 33 = ">30 - 33"

33 - 36 = ">33 - 36"

36 - 39 = ">36 - 39"

39 - 42 = ">39 - 42"

42 - 45 = ">42 - 45"

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-66

45 - 48 = ">45 - 48"

48 - 51 = ">48 - 51"

51 - 54 = ">51 - 54"

54 - 57 = ">54 - 57"

END

SELECT NOT AgeRange = (.)

WRITE APPEND "Epi7" {Provider=Microsoft.Jet.OLEDB.4.0;Data

Source="{C:\Epi_Info_7\Projects\Sample\Sample.prj}: T1 *

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

DEFINE AgeRange TEXTINPUt

RECODE Age TO AgeRange

57 - 60 = ">57 - 60"

60 - 63 = ">60 - 63"

63 - 66 = ">63 - 66"

66 - 69 = ">66 - 69"

69 - 70 = ">69 - 70"

70 - HIVALUE = ">70"

END

SELECT NOT AgeRange = (.)

WRITE APPEND "Epi7" {Provider=Microsoft.Jet.OLEDB.4.0;Data

Source="{C:\Epi_Info_7\Projects\Sample\Sample.prj}: T1 *

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:T1

LIST Age AgeRange

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-67

REGRESS

Description

This command performs multivariate linear regression with support for automatic dummy

variables and multiple interactions. If a variable has more than two values, it is

automatically turned into a series of 'yes/no' variables called 'dummy variables', one for

each extra value.

Syntax

REGRESS <dependent variable> = <independent variable(s)> [NOINTERCEPT]

[OUTTABLE=<tablename>] [WEIGHTVAR=<weight variable>] [PVALUE=<PValue>]

 <dependent variable> represents the dependent variable.

 <independent variable(s)> is an independent variable that can be a numeric

variable, a non-numeric variable, or a variable surrounded by parenthesis. Any text

or yes-no variable, or a variable surrounded with parenthesis, is automatically

recoded into dummy variables. A dummy variable is created for all but one of the

levels of a variable. This dummy variable measures the contribution of its level

relative to the excluded level. Interactions are specified by * between variables.

 <weight variable> represents a variable describing each data row's contribution to

the regression

 <tablename> is the table to store the residuals. If no table name is present, no

residuals are produced.

 <PValue> represents the size of the confidence intervals; may be specified as

percent or decimal; if greater than .5, 1-PValue is used. The default is 95%.

Comments

REGRESS uses the least-squares method for determining coefficients.

Example

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:BabyBloodPressure

REGRESS SystolicBlood = AgeInDays Birthweight

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-68

RELATE

Description

This command links one or more tables to the current dataset during analysis, using a

common identifier to find matching records. The identifier may span several fields, in which

case values in each of the fields must match.

Syntax

RELATE <table specification> [<key(s)>] {ALL}

 The <table specification> represents the type and name of a data table to be read as

the Related file.

 The <key(s)> represent one or more expressions that designate keys on which the

match or relate will be performed. When multiple expressions are used, they are

connected with AND. These following are in the form:

<ExpressionCurrentTable> :: <ExpressionRelateTable>

 The ALL represents records in the table(s) already READ or related for which there

is no corresponding record in the RELATE table will be included in the data with

null values for variables in the RELATE table. If absent, only records with

corresponding records in the RELATE table will be included in the data.

Program Specific Features

Analysis

If the relationship was created in Form Designer, Classic Analysis can relate the two tables

without need of a key expression.

Form Designer

 Grid tables and relate buttons help create parent-child relationships.

 Grid tables have a prefix of recgrid table.

Comments

To use RELATE, at least one table must have been made active with the READ command.

The table to be linked must have a key field that identifies related records in the other

table. In Epi Info 7, the keys in the main and related tables or files might not have to have

the same name.

The expressions in the key are the names of variables in the tables that will be used to

determine which records match each other. More than one key pair ("multiple keys") can be

designated, separated by AND.

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-69

After issuing the RELATE command, the variables in the related table may be used as if

they were part of the main table. Where variable names are duplicated in the related

tables, the variable names will be suffixed with a sequence number. In referring to a

variable in a related table, you may (optionally) use the form HOUSE.AGE to represent the

variable AGE in the form HOUSE. This will distinguish it from another variable AGE that

might be in the main table.

Frequencies, cross-tabulations, and other operations involving data in both the main and

related tables can be performed. To preserve the linked structure, the WRITE command

may be used to create a new table. More than one table may be related to the main table or

related table by using successive RELATE commands.

Example

The records from the RHepatitis data tables are related to the Surveillance data table.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Surveillance

RELATE RHepatitis GlobalRecordId :: [FKEY]

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-70

ROUTEOUT

Description

This command directs output to the named file until the process is terminated by

CLOSEOUT. Output from commands (e.g., FREQ and LIST) is appended to the same

output file as it is produced.

Syntax

ROUTEOUT <filename> {REPLACE | APPEND}

 The <filename> represents an HTM document where the output will be stored. If no

directory is specified, use the directory of the current project.

 The REPLACE | APPEND keyword controls what happens to an existing file with

the same name. If REPLACE is specified, any existing file of the same name is

deleted prior to writing. If APPEND is specified, new output is appended to any

existing file with the same name.

Comments

Epi Info 7 sends output to an HTML document that any browser can be read. If no output is

selected, Epi Info 7 creates a new file (typically called OUTXXX.HTM) where XXX is a

sequential number. Output files are placed in the same directory as the current project. The

prefix for output files and a starting sequence number can be changed from the Storing

Output command located in the Output folder.

If no path is specified, or if the directory does not exist, the output file is created in the

directory of the current project.

Example

The output generated by running the commands below is sent to the file Outbreak1.htm in

the C:\Epi_Info_7\Projects\folder.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

ROUTEOUT “C:\Epi_Info_7\Projects\Outbreak1.htm” REPLACE

SET STATISTICS=COMPLETE

TABLES Vanilla Ill STRATAVAR=Sex

MEANS Chocolate Ill

CLOSEOUT

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-71

RUNPGM

Description

This command runs a stored Classic Analysis program. This command is similar to an

INCLUDE file or subroutine in other systems.

Syntax

RUNPGM '<file name>':"<program>"

RUNPGM '<file name>'

 The <file name> represents the path and filename for the MDB or PGM file where

the program is stored. If the path or filename contains a space, it must be enclosed

in single quotes. If the program to be run is in the current project, the path need not

be supplied.

 The <program> represents the Program name. If the program name contains a

space, it must be enclosed in double quotes. This is not used for text files.

Comments

Since the filename can include any path and database name, the program to be executed

can be stored in a different database.

Examples

Example 1: The program editor code contained in the Statistics.pgm file is run.

RUNPGM "C:\MyProject_Folder\Sample\Sample.prj":Statistics

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-72

SELECT

Description

This command allows an expression to be specified that must be true to process a record. It

can also be called a data filter. If the current selection is Age>35, then only those records

with age greater than 35 are selected. SELECT used alone without an expression cancels

all previous SELECT statements. SELECT statements are cumulative until canceled.

Therefore, Select Age > 34, Select Sex = “Male" will choose males over the age of 34. Cancel

Select before doing Select Sex = “Female" because you will get only records that are male

and female, or none at all.

Syntax

SELECT <expression>

 The <expression> represents any valid Epi Info 7 expression.

Comments

SELECT expressions are cumulative so that the two expressions:

SELECT Age > 35

SELECT Sex = "F"

are equivalent to

SELECT (Age > 35) AND (Sex = "F")

Examples

Example 1: A subset of the data contained in the Food History table is selected. In this case,

only records where the patient is female and interviewed after 04/15/2011, or where the

patient is male and interviewed after 06/01/2011 are selected to be in the subset. Note the

use of parentheses to show relationships.

READ {C:\Epi_Info_7\Projects\Ecoli\EColi.prj}:FoodHistory

SELECT ((DateofInterview > 04/15/2011) AND (Sex =”F-Female")) OR ((DateofInterview >

05/15/2011) AND (Sex = "M-Male"))

LIST * GRIDTABLE

Example 2: A subset of the data contained in the Food History data table is selected. In this

case, only records where the patient's first name is "Pam" are selected to be in the subset.

Note that "Huber" is not case sensitive, and the SELECT command would have also

selected "HUBER" and "huber”.

READ {C:\Epi_Info_7\Projects\Ecoli\EColi.prj}:FoodHistory

SELECT LastName = "Huber"

LIST * GRIDTABLE

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-73

Example 3: A subset of the data contained in the Food History data table is selected. In this

case, only records where the patient's last name starts with the letters "Sch" and ends with

the letter "r" are selected to be in the subset.

READ 'C:\Epi_Info\Refugee.mdb':Patient

SELECT LastName LIKE "Sch*r"

LIST LastName

Example 4: A subset of the data contained in the Oswego data table is selected. In this case,

only records where the patient is ill are selected to be in the subset.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

SELECT Ill = (+)

LIST Name Age Ill

Example 5: A subset of the data contained in the Oswego data table is selected. In this case, all

records except those that do not have a value for the TimeSupper variable (the field was

left blank during data entry) will be selected to be in the subset.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

SELECT NOT TimeSupper = (.)

LIST TimeSupper DateOnset Sex Ill

Example 6: A subset of the data contained in the Oswego data table is selected. Two SELECT

commands have a cumulative effect so that the two expressions are equivalent to SELECT

(Age > 30) AND (Sex = "Male"). Only records where the age is greater than 30 and the sex is

male will be selected.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

SELECT Age > 30

SELECT Sex = "Male"

LIST Age Sex

Example 7: A subset of the data contained in the Oswego data table is selected. Two SELECT

commands have a cumulative effect making the two expressions equivalent to SELECT

(Age > 30) AND (Age < 20). Only records where the age is greater than 30 and less than 20

are selected. Because these two conditions are mutually exclusive, the LIST command

produces no output. A CANCEL SELECT command may be issued to clear the current

selection criteria.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

SELECT Age > 30

SELECT Age < 20

LIST Age Sex

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-74

SET

Description

This command provides various options that affect the performance and output of data in

Classic Analysis. These settings are utilized whenever you use the Classic Analysis

program.

Syntax

SET [<parameter> = <value>]

The <parameter> = <value> represents various elements on the form. Any number of

elements may be used in a single SET statement.

Parameter Values Response

(-) "<Text>" In Boolean variables,

NO will be represented

as <Text>.

(.) "<Text>" Variables with missing

values will be

represented as <Text>.

(+) "<Text>" In Boolean variables,

YES will be represented

as <Text>.

YN "<Text1>" Sets displayed text for

Yes, No, and Missing to

Text1, Text2, and Text3

respectively.

PROCESS NORMAL Deleted records are not

included.

 DELETED Only deleted records are

included.

 BOTH Deleted records are

included.

DELETED YES or (+) Deleted records are

included.

 NO or (-) Deleted records are not

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-75

Parameter Values Response

included.

 ONLY Only deleted records are

included.

MISSING (+) or ON Include missing values

for analysis.

 (-) or OFF Do not include missing

values for analysis.

Program Specific Feature

In the command generator, selecting Save All generates a SET command, which contains

all current settings. Selecting Save Only or OK generates a SET command, which contains

only changed settings. To force a SET command to be generated for a current value of a

setting, change its value and change it back again.

Example

SET MISSING=(-)

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-76

SORT

Description

This command allows a sequence to be specified for records to appear in LIST, GRAPH, and

WRITE commands. If no variable names are specified after the SORT command, the

current sort is cleared, and subsequent record outputs will be in the order of the original

data table. If one variable name is given, records are sorted using that variable as the

"key". If more than one variable is specified, records will be put in order by the first

variable, then within a group with the same value of variable 1, the ordering will be by

variable 2, etc.

Syntax

SORT <variable> {DESCENDING}

 <variable> represents the variable to be sorted by.

 DESCENDING indicates that the sort order is descending; if not specified,

ascending order will be used.

Comments

The parameter DESCENDING must be placed next to the variable to be sorted in

descending order. Should several variables be sorted in descending order, one

DESCENDING should be included for each of them.

Examples

Example 1: The data is sorted by Age in ascending order.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

SORT Age

LIST Age Sex Ill GRIDTABLE

Example 2: The data is sorted by Age in descending order. If two or more records have the

same value for Age, the records are sorted by Ill in descending order. If two or more records

have the same value for Ill, the records are sorted by Sex in descending order.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

SORT Age DESCENDING Ill DESCENDING Sex DESCENDING

LIST Age Sex Ill GRIDTABLE

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-77

SUMMARIZE

Description

This command creates a new table containing summary statistics for the current dataset or

its strata.

Syntax

SUMMARIZE varname::aggregate(variable) [varname::aggregate(variable) ...] TO tablename

STRATAVAR=variable list {WEIGHTVAR=variable}

 Available aggregates are COUNT, MIN, MAX, SUM, FIRST, LAST, AVG, VARiance

and STandardDEViation (Sum, Avg, Var and StDev available only for numeric

fields). COUNT may be used without a variable in parenthesis to indicate that a

count of the number of records in the table or strata is desired. You can also use

COUNT with a variable in parenthesis to indicate that the number of records in the

table or strata with non-missing values of the specified group is desired. FIRST and

LAST are based on the current sort order.

Comments

Classic Analysis creates a new table or appends to an existing table (tablename) containing

variables (varname) which represent aggregates of variables in the current data source

(aggregate[variable]). The aggregates are computed for each group of records, determined

by the STRATAVARs, which are also included in the table. Available aggregates are

COUNT, MIN, MAX, SUM, AVG, VARiance and STandardDEViation (Sum, Avg, Var and

StDev available only for numeric fields). COUNT may be used without a variable in

parenthesis to indicate that a count of the number of records in the group is desired, or with

a variable in parenthesis to indicate that the number of records in the group with non-

missing values of the specified group is desired.

This command solves some recurring problems for programmers. One is computing

percents; it is difficult to get a denominator. Another is determining the earliest or latest

date in a list of relevant dates, or the highest or lowest of a series of measurements. Many

problems can be solved with the OUTTABLE from a TABLES or FREQ command, or with

self-joins, but this provides a straightforward method to achieve these results.

Note: Multi-line (memo) fields are not permitted.

Example

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:EvansCounty

SUMMARIZE Average_Age :: Avg(AGE) Average_DBP :: Avg(DBP) Number_Records :: Count(AGE)

Std_Age :: StDev(AGE) Std_DBP :: StDev(DBP) TO SUMMARY_TABLE

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Summary_Table

LIST *

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-78

TABLES

Description

This command cross-tabulates specified variables in two or three dimensions. Values of the

first variable appear across the top of the table while those of the second variable appear in

the left margin of the table. Unique values of additional variables are represented as strata.

Normally, cells contain counts of records matching the values in the corresponding

marginal labels. If a WEIGHTVAR parameter is given, the cells represent sums of the

weight variable. TABLES DISEASE COUNTY WEIGHTVAR=COUNT provide the same

results as SUMTABLES COUNT DISEASE COUNTY in Epi6.

Syntax

TABLES <exposure> <outcome> {STRATAVAR=[<variable(s)>]} {WEIGHTVAR=<variable>}

{PSUVAR=<variable>} {OUTTABLE=<table>}

 <exposure> represents the variable in the database to be considered the risk factor

(or * for all variables).

 <outcome> represents the variable in the database considered disease of

consequence (or * for all variables).

 <variable> represents the variable in the database.

 <table> represents a valid table name to be used to store output.

Comments

For every possible combination of values of the strata variables, a separate table (stratum)

for variable 1 by variable 2 is produced. TABLES BAKEDHAM ILL STRATAVAR=SEX

produces a table of BAKEDHAM by ILL for each value of sex-one for M and one for F.

TABLES BAKEDHAM ILL STRATAVAR=SEX RACE produces a separate table of

BAKEDHAM by ILL for each combination of SEX and RACE-female/black, female/white,

male/black, male/white, etc.

If * is given instead of a variable name, each variable in the dataset is substituted for * in

turn. To analyze each variable by illness status, use the command TABLES * ILL which

produces tables of SEX by ILL, AGE by ILL, etc.

It is important to consider using * or requesting multidimensional tables if the dataset is

large (thousands of records), since it may produce more tables than needed in terms of time,

paper, and other costs. Press Ctrl-Break to exit from a lengthy procedure.

For 2x2 tables, the command produces odds and risk ratios. For these values to have their

accepted epidemiological meanings, the value representing presence of the exposure and

outcome conditions must appear in the first row and column of the table. Epi Info yes/no

variables are automatically sorted properly. The STATISTICS setting controls the detail to

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-79

which the statistics are reported. For tables other than 2x2, Chi-square statistics are

computed. If an expected value is < 5, the message Chi-square not valid appears. The mid-p

and Fisher exact are preferred, especially in this case.

Multiline (memo) variables cannot be used in tables. To use a Multiline variable, define a

new variable and assign to it the value SUBSTRING(<old variable>,1,255) and use it in the

table.

Examples

Example 1: A 2x2 table is generated showing coronary heart disease (CHD) by Catecholamine

Level (CAT).

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:EvansCounty

TABLES CAT CHD

Example 2: A 2x2 table is generated showing coronary heart disease (CHD) by Catecholamine

Level (CAT), stratified by an age group variable of type yes/no.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:EvansCounty

TABLES CAT CHD STRATAVAR=AgeG1

Example 3: A 2x2 table is generated for every variable in the database using Ill as the outcome

variable for table.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

TABLES * Ill

Example 4: A 2x2 table is generated and saved to a separate table in the Sample database

using the OUTTABLE parameter.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

TABLES Vanilla Ill OUTTABLE = T1

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:T1

LIST * GRIDTABLE

Example 5: A 2x2 table is generated showing obesity and disease outcome. The analysis is

weighted by the value contained in the COUNT column.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Lasum

TABLES OB OUTCOME WEIGHTVAR=COUNT

Example 6: A complex sample table is generated using a stratified cluster survey.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Epi10

TABLES Prenatal VAC STRATAVAR=Location WEIGHTVAR=POPW PSUVAR=Cluster

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-80

TYPEOUT

Description

This command inserts text, a string or file contents, into the output. Typical uses might

include comments or boilerplate.

Syntax

TYPEOUT "text" ([]) {TEXTFONT <color> <size>}

 <text> represents the text to be displayed.

 represents the properties Underline, Bold, or Italic separated by

commas.

 <color> represents Aqua, Lime, Red, Black, Silver, Maroon, Blue, Navy, Teal,

Fuchsia, Olive, White, Grey, Purple, Yellow, or Green. Color can also be represented

by hexadecimal digits ###### with pairs of digits representing the amount of red,

green, and blue on a scale of 0–255.

Comments

TYPEOUT with a text string is similar to TITLE except that TYPEOUT places the text

once when the command is encountered. HEADER appears at the top of each segment of

output until cleared.

If no text in quotation marks follows the TYPEOUT command, TYPEOUT sends the file

contents specified to the current output. It can be in text or HTML.

Examples

Example 2: Displays the word "Confidential" underlined and in bold.

TYPEOUT "Confidential" (BOLD,UNDERLINE)

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-81

UNDEFINE

Description

This command removes a defined variable and any assigned values from the system.

Syntax

UNDEFINE <variable>

 The <variable> represents a defined variable.

Program Specific Feature

Permanent variables cannot be undefined from the Undefine dialog box. To undefine a

permanent variable, type the syntax into the Program Editor and run the command.

Comments

A variable that already exists in the database cannot be undefined. To remove a database

variable from the database, use the WRITE command with the EXCEPT modifier.

Example

UNDEFINE NewVar

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-82

UNDELETE

Description

This command will mark logically deleted records as normal.

Syntax

UNDELETE *

UNDELETE expression

Comments

Undelete * or expression causes all logically deleted records in the current selection

matching the expression to be set to normal status. This applies only to Epi Info 7 forms

and may not be used when using related tables.

Example

UNDELETE AgeInDays > 5

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-83

WRITE

Description

The WRITE command sends records to an output table or file in the specified format.

Specifications include which variables are written, variable order, and the type of file to be

written.

Syntax

WRITE <METHOD> {<output type>} {<project>:}table {[<variable(s)>]}

WRITE <METHOD> {<output type>} {<project>:}table * EXCEPT {[<variable(s)>]}

 <METHOD> represents either REPLACE or APPEND

 <project> represents the path and filename of the output.

 <variable(s)> represents one or more variable names.

 <output type> represents the following allowable outputs:

Database Type Specifier Element

Epi Info 7 "Epi Info 7” <path:<table>

MS Access 97-2003 MS Access 97-

2003

<path>

MS Access 2007 MS Access 2007 <path>

Excel 97-2003 MS Access 97-

2003

<path>

Excel 2007 MS Access 2007 <path>

SQL Server Server Name &

Database Name

Text (Delimited) "Text" <path>

Comments

Records deleted in Enter or selected in Classic Analysis are handled as in other Analysis

commands. Defined variables may be written to allow you to create a new Epi Info 7 file to

make permanent changes. Unless explicitly specified, global and permanent variables will

not be written.

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-84

To write only selected variables, the word EXCEPT may be inserted to indicate all variables

except those following EXCEPT.

If the output file specified does not exist, the WRITE command will attempt to create it.

Either APPEND or REPLACE must be specified to indicate that an existing file/table by

the same name will be erased or records will be appended to the existing file/table. If not

all of the fields being written match those in an existing file during an APPEND, the

unmatched fields are added to the output table.

Examples

Example 1: The Oswego data table (75 records) from Sample.PRJ is written to a database

called SampleOutput. The destination table name is called Oswego_1. The second READ

command reads the newly-created data table.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

WRITE REPLACE "Epi 2000" 'C:\Epi_Info\SampleOutput.mdb':Oswego_1 *

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego_1

Example 2: The Oswego data table (75 records) from Sample.PRJ is written to a database

called SampleOutput three times. The APPEND method ensures that each WRITE

command appends the entire data set several times. After all three WRITE commands have

been run, the Oswego_2 table inside SampleOutput.mdb will contain 225 records.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

WRITE APPEND "Epi7" {Provider=Microsoft.Jet.OLEDB.4.0;Data

Source="C:\Epi_Info_7\Projects\SampleOutput.mdb"} : OSWEGO_2 *

WRITE APPEND "Epi7" {Provider=Microsoft.Jet.OLEDB.4.0;Data

Source="C:\Epi_Info_7\Projects\SampleOutput.mdb"} : OSWEGO_2 *

WRITE APPEND "Epi7" {Provider=Microsoft.Jet.OLEDB.4.0;Data

Source="C:\Epi_Info_7\Projects\SampleOutput.mdb"} : OSWEGO_2 *

READ {C:\Epi_Info_7\Projects\SampleOutput.mdb”}:OSWEGO_2

Example 3: This example shows how to make defined variables into permanent database

variables. The Oswego data table from Sample.PRJ is written to a database called

SampleOutput. Notice that the defined variable IncubationTime does not exist in

Sample.PRJ, but after the WRITE command has executed, it is now a part of the newly-

created data table Oswego_3.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

DEFINE IncubationTime NUMERIC

ASSIGN IncubationTime = HOURS(TimeSupper, DateOnset)

LIST IncubationTime

WRITE REPLACE "Epi7" {Provider=Microsoft.Jet.OLEDB.4.0;Data

Source="C:\Epi_Info_7\Projects\SampleOutput.mdb"} : OSWEGO_3 *

READ {C:\Epi_Info_7\Projects\SampleOutput.mdb”}:OSWEGO_3

LIST * GRIDTABLE

Example 4: The records from the Oswego Form in the Sample database are exported to an

Excel spreadsheet. By specifying age, sex, and incubation time in the WRITE command,

Epi Info™ 7 User Guide – Chapter 13 – Command Reference

13-85

only those variables will be exported. This example may not work if Microsoft Excel is not

installed on the computer.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

DEFINE IncubationTime

ASSIGN IncubationTime = HOURS(TimeSupper, DateOnset)

WRITE REPLACE "Epi7" {Provider=Microsoft.Jet.OLEDB.4.0;Data

Source="C:\Epi_Info_7\Projects\Oswego.xls";Extended Properties="Excel

8.0;HDR=Yes;IMEX=1"} : OSWEGO_1 Age Sex IncubationTime*

READ {C:\Epi_Info_7\Projects\Oswego.xls}:[OSWEGO_1$]

LIST * GRIDTABLE

Example 5: The records from the Oswego Form in the Sample database are exported to a

text file.

READ {C:\Epi_Info_7\Projects\Sample\Sample.prj}:Oswego

WRITE REPLACE "Epi7" {Provider=Microsoft.Jet.OLEDB.4.0;Data Source="C:\

My_Project_Folder ";Extended Properties="text;HDR=Yes;FMT=Delimited"} : [OSWEGO#txt] *

	13. Command Reference
	Introduction
	Check Code Commands
	ASSIGN
	AUTOSEARCH
	BEEP
	CLEAR
	COMMENTS (*)
	DEFINE
	DEFINE DLLOBJECT
	AFTER and END-AFTER
	BEFORE and END-BEFORE
	CLICK and END-CLICK
	EXECUTE
	GOTO
	UNHIDE
	IF THEN ELSE
	NEWRECORD

	Analysis Commands
	ASSIGN
	BEEP
	CANCEL SELECT or SORT
	CLOSEOUT
	COXPH
	DEFINE
	DEFINE DLLOBJECT
	Define Group Command (Analysis Reference)
	DELETE FILE/TABLES
	DELETE RECORDS
	DIALOG
	DISPLAY
	EXECUTE
	FREQ
	GRAPH
	Program Specific Feature

	IF THEN ELSE
	KMSURVIVAL
	LIST
	LOGISTIC
	MEANS
	MERGE
	PRINTOUT
	QUIT
	READ
	RECODE
	REGRESS
	RELATE
	ROUTEOUT
	RUNPGM
	SELECT
	SET
	SORT
	SUMMARIZE
	TABLES
	TYPEOUT
	UNDEFINE
	UNDELETE
	WRITE

